Редактирование: Generative Adversarial Nets (GAN)

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 102: Строка 102:
 
Тогда сделаем предположение, при котором для любого бинарного параметра существует гиперплоскость, что все образцы с одной стороны от нее имеют одинаковое значение этого параметра.
 
Тогда сделаем предположение, при котором для любого бинарного параметра существует гиперплоскость, что все образцы с одной стороны от нее имеют одинаковое значение этого параметра.
  
Заведем следующую функцию "расстояния": <tex>d(n, z) = n^{T}z</tex>, где <tex>n \in \mathbb{R}^{d}</tex>, <tex>n</tex> $-$ вектор нормали гиперплоскости.
+
Заведем следующую функцию "расстояния":  
 +
<tex>d(n, z) = n^{T}z</tex>, где <tex>n \in \mathbb{R}^{d}</tex>, <tex>n</tex> $-$ вектор нормали гиперплоскости.
 
Данная функция не подходит под определение расстояния из-за наличия отрицательных значений (но знак нам необходим для определения знака параметра характеристики).
 
Данная функция не подходит под определение расстояния из-за наличия отрицательных значений (но знак нам необходим для определения знака параметра характеристики).
 
Ожидается, что есть близкая к линеной зависимость оценки $f$ по данному параметру от "расстояния":
 
Ожидается, что есть близкая к линеной зависимость оценки $f$ по данному параметру от "расстояния":

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: