L 2-теория рядов Фурье — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(взята блокировка на статью :))
 
Строка 1: Строка 1:
 
{{В разработке}}
 
{{В разработке}}
 +
 +
В теории интеграла мы доказали, что любое пространство <tex>L_p</tex>-полное. С другой стороны, в
 +
пространстве <tex>L_2</tex> можно определить скалярное произведение:
 +
 +
<tex>\langle f, g \rangle = \int\limits_Q f\cdot g</tex>
 +
 +
Он конечен в силу неравенства Гёльдера, так как <tex>\int\limits_Q |fg| \le \sqrt{\int\limits_Q f^2} + \sqrt{\int\limits_Q g^2}</tex>
 +
 +
Эта операция обладает свойствами скалярного произведения:
 +
* <tex>\langle f; f \rangle \le 0</tex> и <tex>\langle f; f\rangle = 0 \iff f = 0</tex> почти всюду
 +
* Линейность. <tex>\langle \alpha f_1 + \beta f_2 , g \rangle = \alpha\langle f_1, g \rangle + \beta \langle f_2, g\rangle</tex>
 +
* Симметричность. <tex>\langle f, g\rangle = \langle g, f \rangle</tex>
 +
 +
Введём норму <tex>\|f\| = \sqrt{\langle f, f\rangle} = \sqrt{\int\limits_Q f^2}</tex>
 +
 +
В силу того, что пространство полное и норма порождает скалярное произведение, это пространство Гильберта.
 +
 +
{{Определение
 +
|definition=''<tex>L_2</tex>-теория рядов Фурье'' {{---}} теория, в которой ряды Фурье рассматриваются как элементы
 +
Гильбертовва пространства и исследуюеся их свойствва как таких объектов.
 +
}}
 +
 +
Центральную роль в <tex>L_2</tex>-теории играет ''ортонормированная система точек''(ОНС)
 +
 +
{{Определение
 +
|definition=<tex>e_1, e_2, \ldots, e_n</tex> {{---}} ОНС <tex>\iff</tex> <tex>\langle e_i, e_j \rangle = \delta_{ij}</tex>
 +
}}
 +
 +
Если в качестве модели взять <tex>L_2</tex> и рассмотреть стандартную тригонометрическую систему функций <tex>1, \sin x, \cos x, \sin 2x, \cos 2x, \ldots, \sin nx, \cos nx</tex>, то окажется, что она {{---}} ортогональная.
 +
 +
Попарная ортогональность:
 +
<tex>\int\limits_Q \cos^2 nx dx = \pi</tex>, <tex>\int\limits_Q \sin^2 nx dx = \pi</tex>, <tex>\int\limits_Q 1 = 2\pi</tex>.
 +
 +
Тогда ОНС будет:
 +
<tex>\frac1{\sqrt{2\pi}}, \frac{\sin x}{\sqrt\pi}, \frac{\cos x}{\sqrt\pi}, \ldots, \frac{\sin nx}{\sqrt\pi}, \frac{\cos nx}{\sqrt\pi}</tex>
 +
 +
По ортонормированной системе можно составлять формальные ряды в <tex>\mathcal{H}</tex>.
 +
 +
<tex>\sum\limits_{j=1}^\infty \alpha_je_j</tex> в <tex>\mathcal{H}</tex> ортогональна: <tex>i\ne j \Rightarrow \langle \alpha_1 e_i, \alpha_2 e_j \rangle</tex> = 0
 +
 +
{{Теорема
 +
|statement=Пусть <tex>\sum\limits_{j=1}^\infty a_j</tex> {{---}} ортогональный ряд. Он сходится тогда и только тогда, когда
 +
<tex>\sum\limits_{j=1}^\infty |a_j|^2</tex> сходится. И, если при этом, <tex>\sum\limits_{j=1}^{\infty} a_j = a</tex>, то
 +
<tex>\sum\limits_{j=1}^\infty |a_j|^2 = a^2 </tex>
 +
|proof=
 +
Возьмём <tex>A_n = \sum\limits_{j=1}^n a_j</tex>. <tex>a</tex> по определению сходятся, это существование предела <tex>A_n</tex>. Так как пространство {{---}} Гильбертово, то <tex>A</tex> сходится в себе. Значит,
 +
<tex>\lim\limits_{n, m \to \infty, m > n} \|A_n - A_m\| \to 0 \Rightarrow \|A_n - A_m\| \to 0 \Rightarrow </tex>
 +
<tex>\sum\limits_{j=n+1}^m a_j = A_m - A_n</tex>.
 +
 +
<tex>\|A_m - A_n\|^2 = \left\langle \sum\limits_{i=n+1}^m a_i, \sum\limits_{j=n+1}^m a_j \right\rangle</tex>
 +
<tex>= \sum\limits_{i, j = n+1}^m \langle a_i, a_j\rangle</tex>
 +
<tex>= \sum\limits_{j=n+1}^m \langle a_j, a_j \rangle</tex>
 +
<tex>= \sum\limits_{j=n+1}^m \|a_j\|^2</tex>
 +
 +
По критерию Коши сходимости числовых рядов <tex>\sum\limits_{j=n+1}^m \|a_j\|^2 \to 0 \iff </tex>
 +
 +
 +
}}
 +
 +
 +
{{TODO|t=продолжить}}

Версия 06:11, 21 июня 2012

Эта статья находится в разработке!

В теории интеграла мы доказали, что любое пространство [math]L_p[/math]-полное. С другой стороны, в пространстве [math]L_2[/math] можно определить скалярное произведение:

[math]\langle f, g \rangle = \int\limits_Q f\cdot g[/math]

Он конечен в силу неравенства Гёльдера, так как [math]\int\limits_Q |fg| \le \sqrt{\int\limits_Q f^2} + \sqrt{\int\limits_Q g^2}[/math]

Эта операция обладает свойствами скалярного произведения:

  • [math]\langle f; f \rangle \le 0[/math] и [math]\langle f; f\rangle = 0 \iff f = 0[/math] почти всюду
  • Линейность. [math]\langle \alpha f_1 + \beta f_2 , g \rangle = \alpha\langle f_1, g \rangle + \beta \langle f_2, g\rangle[/math]
  • Симметричность. [math]\langle f, g\rangle = \langle g, f \rangle[/math]

Введём норму [math]\|f\| = \sqrt{\langle f, f\rangle} = \sqrt{\int\limits_Q f^2}[/math]

В силу того, что пространство полное и норма порождает скалярное произведение, это пространство Гильберта.


Определение:
[math]L_2[/math]-теория рядов Фурье — теория, в которой ряды Фурье рассматриваются как элементы Гильбертовва пространства и исследуюеся их свойствва как таких объектов.


Центральную роль в [math]L_2[/math]-теории играет ортонормированная система точек(ОНС)


Определение:
[math]e_1, e_2, \ldots, e_n[/math] — ОНС [math]\iff[/math] [math]\langle e_i, e_j \rangle = \delta_{ij}[/math]


Если в качестве модели взять [math]L_2[/math] и рассмотреть стандартную тригонометрическую систему функций [math]1, \sin x, \cos x, \sin 2x, \cos 2x, \ldots, \sin nx, \cos nx[/math], то окажется, что она — ортогональная.

Попарная ортогональность: [math]\int\limits_Q \cos^2 nx dx = \pi[/math], [math]\int\limits_Q \sin^2 nx dx = \pi[/math], [math]\int\limits_Q 1 = 2\pi[/math].

Тогда ОНС будет: [math]\frac1{\sqrt{2\pi}}, \frac{\sin x}{\sqrt\pi}, \frac{\cos x}{\sqrt\pi}, \ldots, \frac{\sin nx}{\sqrt\pi}, \frac{\cos nx}{\sqrt\pi}[/math]

По ортонормированной системе можно составлять формальные ряды в [math]\mathcal{H}[/math].

[math]\sum\limits_{j=1}^\infty \alpha_je_j[/math] в [math]\mathcal{H}[/math] ортогональна: [math]i\ne j \Rightarrow \langle \alpha_1 e_i, \alpha_2 e_j \rangle[/math] = 0

Теорема:
Пусть [math]\sum\limits_{j=1}^\infty a_j[/math] — ортогональный ряд. Он сходится тогда и только тогда, когда

[math]\sum\limits_{j=1}^\infty |a_j|^2[/math] сходится. И, если при этом, [math]\sum\limits_{j=1}^{\infty} a_j = a[/math], то

[math]\sum\limits_{j=1}^\infty |a_j|^2 = a^2 [/math]
Доказательство:
[math]\triangleright[/math]

Возьмём [math]A_n = \sum\limits_{j=1}^n a_j[/math]. [math]a[/math] по определению сходятся, это существование предела [math]A_n[/math]. Так как пространство — Гильбертово, то [math]A[/math] сходится в себе. Значит, [math]\lim\limits_{n, m \to \infty, m \gt n} \|A_n - A_m\| \to 0 \Rightarrow \|A_n - A_m\| \to 0 \Rightarrow [/math] [math]\sum\limits_{j=n+1}^m a_j = A_m - A_n[/math].

[math]\|A_m - A_n\|^2 = \left\langle \sum\limits_{i=n+1}^m a_i, \sum\limits_{j=n+1}^m a_j \right\rangle[/math] [math]= \sum\limits_{i, j = n+1}^m \langle a_i, a_j\rangle[/math] [math]= \sum\limits_{j=n+1}^m \langle a_j, a_j \rangle[/math] [math]= \sum\limits_{j=n+1}^m \|a_j\|^2[/math]

По критерию Коши сходимости числовых рядов [math]\sum\limits_{j=n+1}^m \|a_j\|^2 \to 0 \iff [/math]
[math]\triangleleft[/math]


TODO: продолжить