Редактирование: Level Ancestor problem

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 46: Строка 46:
  
 
=== Доказательство корректности ===
 
=== Доказательство корректности ===
Рассмотрим путь, на котором лежит вершина <tex>v</tex> до удвоения. Он длины хотя бы <tex>2^i</tex>, так как мы точно знаем, что существует вершина потомок <tex>v</tex>, расстояние до которого ровно <tex>2^i</tex> (это вершина, из которой мы только что пришли). Значит, после удвоения этот путь стал длины хотя бы <tex>2^{i + 1}</tex>, причем хотя бы <tex>2^i</tex> вершин в нем предки <tex>v</tex>. Это означает, что вершина, которую мы ищем, находится на этом пути (иначе бы мы могли до этого прыгнуть еще на <tex>2^i</tex> вверх). Так как мы знаем позицию <tex>v</tex> в этом пути, то нужную вершину мы можем найти за <tex>O(1)</tex>.
+
Рассмотрим путь, на котором лежит вершина <tex>v</tex> до удвоения. Он длины хотя бы <tex>2^i</tex>, так как мы точно знаем, что существует вершина потомок <tex>v</tex>, расстояние до которого ровно <tex>2^i</tex> (это вершина, из которой мы только что пришли). Значит, после удвоения этот путь стал длины хотя бы <tex>2^{i + 1}</tex>, причем хотя бы <tex>2^i</tex> вершин в нем - предки <tex>v</tex>. Это означает, что вершина, которую мы ищем, находится на этом пути (иначе бы мы могли до этого прыгнуть еще на <tex>2^i</tex> вверх). Так как мы знаем позицию <tex>v</tex> в этом пути, то нужную вершину мы можем найти за <tex>O(1)</tex>.
  
 
Таким образом, наш алгоритм работает за <tex>\langle O(n\log n), O(1)\rangle </tex> времени и за <tex>O(n\log n)</tex> памяти. Методом четырех русских данный метод можно улучшить до <tex>\langle O(n), O(1)\rangle </tex> с помощью оптимизации предподсчета.
 
Таким образом, наш алгоритм работает за <tex>\langle O(n\log n), O(1)\rangle </tex> времени и за <tex>O(n\log n)</tex> памяти. Методом четырех русских данный метод можно улучшить до <tex>\langle O(n), O(1)\rangle </tex> с помощью оптимизации предподсчета.
 
 
==  The Macro-Micro-Tree Algorithm ==
 
==  The Macro-Micro-Tree Algorithm ==
 
В данном разделе мы докажем, что предподсчет предыдущего алгоритма можно улучшить до <tex>O(n)</tex>.
 
В данном разделе мы докажем, что предподсчет предыдущего алгоритма можно улучшить до <tex>O(n)</tex>.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблон, используемый на этой странице: