M-сводимость — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Источники информации)
(Применение)
Строка 25: Строка 25:
 
Приведённая лемма позволяет доказывать алгоритмическую неразрешимость некоторой задачи, сводя к ней ''(а не наоборот!)'' другую, неразрешимость которой уже доказана.
 
Приведённая лемма позволяет доказывать алгоритмическую неразрешимость некоторой задачи, сводя к ней ''(а не наоборот!)'' другую, неразрешимость которой уже доказана.
  
Например, [[Примеры неразрешимых задач: проблема соответствий Поста|проблема соответствий Поста]].
+
К таким задачам относятся, например, [[Примеры неразрешимых задач: проблема соответствий Поста|проблема соответствий Поста]], [[Примеры неразрешимых задач: задача о замощении|задача о замощении полимино]] и другие .
  
 
==Сведение по Тьюрингу==
 
==Сведение по Тьюрингу==

Версия 23:34, 1 декабря 2016

Определение:
Множество [math]A[/math] m-сводится (англ. many-one reducible, m-reducible) ко множеству [math]B[/math], если существует всюду определённая вычислимая функция [math]f : x\in A\Leftrightarrow f(x)\in B[/math], то есть [math]f(A) \subset B[/math] и [math]f(\overline{A}) \subset \overline{B}[/math]. Обозначение: [math]A\leqslant_{m}B[/math].


Определение:
[math]A[/math] m-эквивалентно (англ. many-one equivalent, m-equivalent) [math]B[/math], если [math]A\leqslant_{m}B[/math] и [math]B\leqslant_{m}A[/math]. Обозначение: [math]A\equiv_{m}B[/math].

Свойства

  1. [math]A\leqslant_{m}A[/math].
    • Доказательство: [math]f(x)=x[/math].
  2. Если [math]A\leqslant_{m}B[/math] и [math]B[/math] разрешимо, то [math]A[/math] разрешимо.
    • Доказательство: Пусть [math]p[/math] — программа-разрешитель для [math]B[/math]. Тогда для любого [math]x\in A[/math] разрешитель должен вернуть значение [math]p(f(x))[/math].
  3. Если [math]A\leqslant_{m}B[/math] и [math]B[/math] перечислимо, то [math]A[/math] перечислимо.
    • Доказательство: Аналогично предыдущему свойству.
  4. Если [math]A\leqslant_{m}B[/math] и [math]B\leqslant_{m}C[/math], то [math]A\leqslant_{m}C[/math].
    • Доказательство: Если [math]f:A\to B[/math] и [math]g:B\to C[/math], то m-сводящая функция [math]h:A\to C[/math] выглядит так [math]h(x) = g(f(x))[/math].

Применение

Лемма:
Если [math]A\leqslant_{m}B[/math] и [math]A[/math] неразрешимо, то [math]B[/math] неразрешимо.
Доказательство:
[math]\triangleright[/math]
Следует из второго свойства.
[math]\triangleleft[/math]

Приведённая лемма позволяет доказывать алгоритмическую неразрешимость некоторой задачи, сводя к ней (а не наоборот!) другую, неразрешимость которой уже доказана.

К таким задачам относятся, например, проблема соответствий Поста, задача о замощении полимино и другие .

Сведение по Тьюрингу

Определение:
Язык [math]L[/math] сводится по Тьюрингу (англ. Turing reducible) к языку [math]M[/math], если язык [math]M[/math] является разрешимым с использованием [math]L[/math] как оракула, обозначается как [math]L \leqslant_T M[/math].


Определение:
Язык [math]L[/math] эквивалентен по Тьюрингу (англ. Turing equivalent) языку [math]M[/math], если [math]L \leqslant_T M[/math] и [math]M \leqslant_T L[/math], обозначается как [math]L \equiv_T M[/math].


Свойства

  • рефлексивность: [math] L \leqslant_T L [/math]
  • транзитивность: из [math] L \leqslant_T M [/math] и [math] M \leqslant_T N[/math] следует [math] L \leqslant_T N [/math]
  • Очевидно, что [math]\equiv_T[/math] — отношение эквивалентности


Т-степени

Обозначим за [math]\mathcal{D}_T[/math] множество классов эквивалентности языков по отношению [math]\equiv_T[/math], это множество будет множеством [math]T[/math]-степеней (тьюринговых степеней).


Определение:
[math]T[/math]-степенью языка [math]L[/math] называется его класс эквивалентности по отношению [math]\equiv_T[/math], то есть [math]\mathrm{deg}_T(L) = \{ M \mid L \equiv_T M \}[/math].


На [math]T[/math]-степенях можно ввести частичный порядок: для [math]d_1, d_2 \in \mathcal{D}_T, d_1 \leqslant d_2[/math], если для каких-то [math]L \in d_1, M \in d_2: L \leqslant_T M[/math], определение корректно, так как порядок не будет зависеть от выбора представителя [math]T[/math]-степени.

Свойства

  • [math]\mathrm{R}[/math] — минимальный элемент в частичном порядке на [math]T[/math]-степенях. Очевидно из того, что класс разрешимых языков замкнут по использованию разрешимого языка в качестве оракула.
  • Любая пара [math]T[/math]-степеней [math]d_1, d_2 \in \mathcal{D}_T[/math] имеет наименьшую верхнюю границу [math]d_1 \lor d_2 \in \mathcal{D}_T[/math].

Тьюринговый скачок

Обозначим за [math]H[/math] язык программ, останавливающихся на пустом входе. Обозначим за [math]H^f[/math] язык программ, использующих [math]f[/math] в качестве оракула и останавливающихся на пустом входе.

Можно показать, что:

  • [math]f \lt _T H^f[/math]
  • Если [math]f \leqslant_T g[/math], то [math]H^f \leqslant_T H^g[/math]

Тогда тьюринговым скачком [math]T[/math]-степени [math]d[/math] называется [math]T[/math]-степень языка [math]H^L[/math], где [math]L[/math] — произвольный язык в [math]d[/math]. Заметим, что если [math]L \equiv_T M[/math], то [math]H^L \equiv_T H^M[/math], поэтому определение корректно. Оператор тьюрингова скачка обозначим как [math]J : \mathcal{D}_T \to \mathcal{D}_T[/math].

Источники информации