Редактирование: Neural Style Transfer

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 164: Строка 164:
 
[[Neural_Style_Transfer#Алгоритм Гатиса | Целевая функция аналогична алгоритму Гатиса]], который указывает, что эти алгоритмы также являются ''параметрическими методами со сводной статистикой''.  
 
[[Neural_Style_Transfer#Алгоритм Гатиса | Целевая функция аналогична алгоритму Гатиса]], который указывает, что эти алгоритмы также являются ''параметрическими методами со сводной статистикой''.  
  
'''Алгоритмы Джонсона и Ульянова''' добились передачи стиля в реальном времени. Тем не менее, конструкция алгоритма в основном следует алгоритму Гатиса, что приводит к аналогичным проблем, что и у Гатиса (например, отсутствие рассмотрения в согласованность деталей и глубины информации).
+
Алгоритмы Джонсона и Ульянова добились передачи стиля в реальном времени. Тем не менее, конструкция алгоритма в основном следует алгоритму Гатиса, что приводит к аналогичным проблем, что и у Гатиса (например, отсутствие рассмотрения в согласованность деталей и глубины информации).
  
 
После Ульянов обнаружил, что простое применение нормализации к каждому отдельному изображению, а не к '''пакетной нормализации''' (англ. ''batch normalization, BN'') приводит к значительному улучшению качества стилизации. Нормализация одиночного изображения называется '''нормализацией экземпляра''' (англ. ''instance normalisation, IN''), что эквивалентно нормализации пакета, когда размер пакета = 1. Показано, что сеть передачи стиля с IN сходится быстрее, чем BN, а также обеспечивает визуально лучшие результаты. Одно из объяснений состоит в том, что IN может напрямую нормализовать стиль каждого изображения контента до желаемого стиля. Следовательно, цель легче минимизировать, так как остальная часть сети должна заботиться только о потере контента.
 
После Ульянов обнаружил, что простое применение нормализации к каждому отдельному изображению, а не к '''пакетной нормализации''' (англ. ''batch normalization, BN'') приводит к значительному улучшению качества стилизации. Нормализация одиночного изображения называется '''нормализацией экземпляра''' (англ. ''instance normalisation, IN''), что эквивалентно нормализации пакета, когда размер пакета = 1. Показано, что сеть передачи стиля с IN сходится быстрее, чем BN, а также обеспечивает визуально лучшие результаты. Одно из объяснений состоит в том, что IN может напрямую нормализовать стиль каждого изображения контента до желаемого стиля. Следовательно, цель легче минимизировать, так как остальная часть сети должна заботиться только о потере контента.

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: