Редактирование: QpmtnriLmax

Перейти к: навигация, поиск

Внимание! Вы не авторизовались на сайте. Ваш IP-адрес будет публично видимым, если вы будете вносить любые правки. Если вы войдёте или создадите учётную запись, правки вместо этого будут связаны с вашим именем пользователя, а также у вас появятся другие преимущества.

Правка может быть отменена. Пожалуйста, просмотрите сравнение версий, чтобы убедиться, что это именно те изменения, которые вас интересуют, и нажмите «Записать страницу», чтобы изменения вступили в силу.
Текущая версия Ваш текст
Строка 5: Строка 5:
 
# Есть несколько заданий, каждое имеет своё время появления <tex>r_i</tex> и время окончания <tex>d_i</tex>.
 
# Есть несколько заданий, каждое имеет своё время появления <tex>r_i</tex> и время окончания <tex>d_i</tex>.
 
# Работа может быть прервана в любой момент и продолжена позже на любой машине.
 
# Работа может быть прервана в любой момент и продолжена позже на любой машине.
Требуется минимизировать максимальное опоздание <tex>L_{max} = \max\limits_i \{C_i - d_i\}</tex>.
+
Требуется минимизировать максимальное опоздание <tex>L_{max} = \max\limits_i \{C_i - d_i\}</tex>  
 
}}
 
}}
 +
 +
[[Файл:Figure_5.2.png|400px|thumb|right|Рис. 1 - Исходная сеть]]
  
 
==Алгоритм==
 
==Алгоритм==
 
===Алгоритм решения===
 
===Алгоритм решения===
<table>
+
[[Файл:Figure_5.9.b.png|500px|thumb|right|Рис. 2 - Расширение сети]]
<tr>
 
<td>[[Файл:Figure_5.2.png|500px|thumb|Рис. 1. Исходная сеть]]</td>
 
<td>[[Файл:Figure_5.9.b.png|500px|thumb|Рис. 2. Расширение сети]]</td>
 
</tr>
 
</table>
 
 
 
  
 
Как в [[PpmtnriLmax|задаче]] <tex>P \mid pmtn, r_i \mid L_{max}</tex> применим метод [[Вещественный_двоичный_поиск|двоичного поиска]] и сведем задачу к <tex> Q \mid pmtn, r_i, d_i \mid - </tex>. Для существования расписания с <tex> L_{max} \leqslant L^* </tex> требуется, чтобы у работы с номером <tex> i </tex> выполнялось <tex> C_i - d_i \leqslant L^* </tex>, что эквивалентно <tex> C_i \leqslant d_i + L^* </tex>. Опишем алгоритм решения <tex> Q \mid pmtn, r_i, d_i \mid - </tex> при помощи сведения к задаче поиска [[Определение_сети,_потока|максимального потока]].
 
Как в [[PpmtnriLmax|задаче]] <tex>P \mid pmtn, r_i \mid L_{max}</tex> применим метод [[Вещественный_двоичный_поиск|двоичного поиска]] и сведем задачу к <tex> Q \mid pmtn, r_i, d_i \mid - </tex>. Для существования расписания с <tex> L_{max} \leqslant L^* </tex> требуется, чтобы у работы с номером <tex> i </tex> выполнялось <tex> C_i - d_i \leqslant L^* </tex>, что эквивалентно <tex> C_i \leqslant d_i + L^* </tex>. Опишем алгоритм решения <tex> Q \mid pmtn, r_i, d_i \mid - </tex> при помощи сведения к задаче поиска [[Определение_сети,_потока|максимального потока]].
Строка 29: Строка 25:
 
Расширенная подсеть строится путем добавления к вершинам <tex> I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> вершин <tex>(K, 1), (K, 2), . . . (K, m) </tex>. При <tex>j = 1,..., m </tex>, есть дуги от <tex>(K, j)</tex> до <tex>I_K</tex> с пропускной способностью <tex> j(s_j - s_{j+1}) T_K </tex> и для всех <tex>\nu = 1,. . . , s</tex> и <tex>j = 1,. . ., m</tex> существует дуга из <tex>J_{i_\nu}</tex> в <tex>(K, J)</tex> с пропускной способностью <tex> (s_j - s_{j+1}) T_K </tex>. Это выполняется для каждой вершины <tex>I_K</tex>. Кроме того, мы сохраняем дуги из <tex>s</tex> в <tex>J_i</tex> пропускной способностью <tex>p_i</tex> и дуги из <tex>I_K</tex> в <tex>t</tex> пропускной способностью <tex>S_mT_K</tex> (Рис. 1).
 
Расширенная подсеть строится путем добавления к вершинам <tex> I_K, J_{i_1}, J_{i_2}, . . . , J_{i_s} </tex> вершин <tex>(K, 1), (K, 2), . . . (K, m) </tex>. При <tex>j = 1,..., m </tex>, есть дуги от <tex>(K, j)</tex> до <tex>I_K</tex> с пропускной способностью <tex> j(s_j - s_{j+1}) T_K </tex> и для всех <tex>\nu = 1,. . . , s</tex> и <tex>j = 1,. . ., m</tex> существует дуга из <tex>J_{i_\nu}</tex> в <tex>(K, J)</tex> с пропускной способностью <tex> (s_j - s_{j+1}) T_K </tex>. Это выполняется для каждой вершины <tex>I_K</tex>. Кроме того, мы сохраняем дуги из <tex>s</tex> в <tex>J_i</tex> пропускной способностью <tex>p_i</tex> и дуги из <tex>I_K</tex> в <tex>t</tex> пропускной способностью <tex>S_mT_K</tex> (Рис. 1).
  
===Корректность и оптимальность алгоритма===
 
 
{{Теорема
 
{{Теорема
 
|statement=Следующие утверждения эквивалентны:
 
|statement=Следующие утверждения эквивалентны:
:<tex>(a)</tex> Существует допустимое расписание.
 
:<tex>(b)</tex> В расширенной сети существует поток от <tex>s</tex> до <tex>t</tex> со значением <tex>\sum\limits_{i=1}^n p_i</tex>.
 
  
|proof=<tex>(b) \Rightarrow (a)</tex>
+
<tex>(a)</tex> Существует допустимое расписание.
 +
 
 +
<tex>(b)</tex> В расширенной сети существует поток от <tex>s</tex> до <tex>t</tex> со значением <tex>\sum\limits_{i=1}^n p_i</tex>
  
:Рассмотрим в расширенной сети поток величиной <tex>\sum\limits_{i = 1}^n {p_i}</tex>. Обозначим через <tex>x_{iK}</tex> общий поток, который идет от <tex>J_i</tex> до <tex>I_K</tex>. Заметим, что <tex>\sum\limits_{i = 1}^n \sum\limits_{K = 2}^r x_{iK} = \sum\limits_{i = 1}^n p_i</tex>. Достаточно показать, что для каждого подмножества <tex>A \subseteq \{ 1, . . . , n \}</tex> выполняется
+
|proof=<tex>(b) \Rightarrow (a):</tex>
 +
Рассмотрим в расширенной сети поток величиной <tex>\sum\limits_{i = 1}^n {p_i}</tex>. Обозначим через <tex>x_{iK}</tex> общий поток, который идет от <tex>J_i</tex> до <tex>I_K</tex>. Заметим, что <tex>\sum\limits_{i = 1}^n \sum\limits_{K = 2}^r x_{iK} = \sum\limits_{i = 1}^n p_i</tex>. Достаточно показать, что для каждого подмножества <tex>A \subseteq \{ 1, . . . , n \}</tex> выполняется
  
:<tex>\sum\limits_{i \in A} x_{iK} \leqslant T_Kh(A)</tex> ,где <tex>h(A) =  
+
<tex>\sum\limits_{i \in A} x_{iK} \leqslant T_Kh(A)</tex> ,где <tex>h(A) =  
 
\begin{cases}
 
\begin{cases}
 
  S_{|A|}, & \text{if }|A| \leqslant m \\
 
  S_{|A|}, & \text{if }|A| \leqslant m \\
Строка 45: Строка 41:
 
\end{cases} </tex>.
 
\end{cases} </tex>.
  
:Это означает, что условие <tex>\sum\limits_{i \in A} p_i \leqslant Th(A), \forall A \subseteq \{ 1, ... , n \}</tex> выполняется  и требования к обработке <tex>x_{1K}, . . . , x_{nK}</tex> могут быть запланированы как <tex>I_K</tex> для <tex>K = 2, . . . , r</tex>. Рассмотрим подсеть в расширенной сети в подмножестве <tex>A</tex> и соответствующие части потока. Фрагмент частичного потока, который проходит через <tex>(K, j)</tex> ограничен
+
Это означает, что условие <tex>\sum\limits_{i \in A} p_i \leqslant Th(A), \forall A \subseteq \{ 1, ... , n \}</tex> выполняется  и требования к обработке <tex>x_{1K}, . . . , x_{nK}</tex> могут быть запланированы как <tex>I_K</tex> для <tex>K = 2, . . . , r</tex>. Рассмотрим подсеть в расширенной сети в подмножестве <tex>A</tex> и соответствующие части потока. Фрагмент частичного потока, который проходит через <tex>(K, j)</tex> ограничен
  
:<tex>\min \{ j(s_j −- s_{j + 1})T_K, |A|(s_j - s_{j+1})T_K \} = T_K(s_j - s_{j+1}) \min \{ j, |A| \}</tex>.
+
<tex>\min \{ j(s_j −- s_{j + 1})T_K, |A|(s_j - s_{j+1})T_K \} = T_K(s_j - s_{j+1}) \min \{ j, |A| \}</tex>.
  
:Таким образом, мы имеем
+
Таким образом, мы имеем
  
<table align = center>
 
<tr>
 
<td>
 
 
<tex>\sum\limits_{i \in A} x_{iK} \geqslant T_K \sum\limits_{j = 1}^m(s_j −- s_{j+1}) \min \{ j, |A| \} = T_Kh(A)</tex>. <tex>(*)</tex>
 
<tex>\sum\limits_{i \in A} x_{iK} \geqslant T_K \sum\limits_{j = 1}^m(s_j −- s_{j+1}) \min \{ j, |A| \} = T_Kh(A)</tex>. <tex>(*)</tex>
</td>
 
</tr>
 
</table>
 
  
:То, что равенство <tex>(*)</tex> справедливо, может рассматриваться как следствие. Если <tex>|A| > m</tex>, то
+
То, что равенство <tex>(*)</tex> справедливо, может рассматриваться как следствие. Если <tex>|A| > m</tex>, то
  
:<tex>\sum\limits_{j = 1}^m \min \{ j, |A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - 3s_4 + ... + ms_s - ms_{m+1} =\ </tex>
+
<tex>\sum\limits_{j = 1}^m \min \{ j, |A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - 3s_4 + ... + ms_s - ms_{m+1} =\ </tex>
:<tex>S_m = h(A)</tex>.
+
<tex>S_m = h(A)</tex>.
  
:В противном случае
+
В противном случае
  
:<tex>\sum\limits_{j = 1} \min \{ j, |A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - ... + (|A| - 1)s_{|A| - 1} -\ </tex>
+
<tex>\sum\limits_{j = 1} \min \{ j, |A| \}(s_j - s_{j + 1}) = s_1 - s_2 + 2s_2 - 2s_3 + 3s_3 - ... + (|A| - 1)s_{|A| - 1} -\ </tex>
:<tex>(|A| - 1)s_{|A|} + |A|(s_{|A|} - s_{|A| - 1} - ... - s_m + s_m - s_{m + 1}) = S_{|A|} = h(A)</tex>
+
<tex>(|A| - 1)s_{|A|} + |A|(s_{|A|} - s_{|A| - 1} - ... - s_m + s_m - s_{m + 1}) = S_{|A|} = h(A)</tex>.
  
<tex>(a) \Rightarrow (b)</tex><br>
+
<tex>(a) \Rightarrow (b):</tex>
:Предположим, что допустимое расписание существует. Для <tex>i = 1, ... , n </tex> и <tex>K = 2, ..., r</tex> пусть <tex>x_{iK}</tex> является "объемом работ", который будет выполняться в интервале <tex>I_K</tex> в соответствии с нашим возможным расписанием. Тогда для всех <tex>K = 2, ..., r</tex> и произвольных наборов <tex>A \subseteq \{ 1, . . . , n \}</tex>, неравенство
+
Предположим, что допустимое расписание существует. Для <tex>i = 1, ... , n </tex> и <tex>K = 2, ..., r</tex> пусть <tex>x_{iK}</tex> является "объемом работ", который будет выполняться в интервале <tex>I_K</tex> в соответствии с нашим возможным расписанием. Тогда для всех <tex>K = 2, ..., r</tex> и произвольных наборов <tex>A \subseteq \{ 1, . . . , n \}</tex>, неравенство
  
:<table align = center>
 
<tr>
 
<td>
 
 
<tex>\sum\limits_{i \in A} x_{iK} \leqslant T_Kh(A)</tex> <tex>(**)</tex>
 
<tex>\sum\limits_{i \in A} x_{iK} \leqslant T_Kh(A)</tex> <tex>(**)</tex>
</td>
 
</tr>
 
</table>
 
  
 
выполняется. Кроме того, для <tex>i = 1, . . . , n</tex> у нас <tex>p_i = \sum\limits_{K = 2}^r s_{iK}</tex>. Остается показать, что можно отправить <tex>x_{iK}</tex> от <tex>J_i</tex> до <tex>I_K</tex> <tex>(i = 1, . . . , n; K = 2, . . . , r)</tex> в расширенной сети. Такой поток существует, если <tex>\forall A \subseteq \{ 1, . . . , n \}</tex> и <tex>K = 2, . . . , r</tex> значение <tex>\sum\limits_{i \in A} x_{iK}</tex> ограничено величиной минимального разреза части сети с истоками <tex>J_i(i \in A)</tex> и стоком <tex>I_K</tex>. Тем не менее, это значение
 
выполняется. Кроме того, для <tex>i = 1, . . . , n</tex> у нас <tex>p_i = \sum\limits_{K = 2}^r s_{iK}</tex>. Остается показать, что можно отправить <tex>x_{iK}</tex> от <tex>J_i</tex> до <tex>I_K</tex> <tex>(i = 1, . . . , n; K = 2, . . . , r)</tex> в расширенной сети. Такой поток существует, если <tex>\forall A \subseteq \{ 1, . . . , n \}</tex> и <tex>K = 2, . . . , r</tex> значение <tex>\sum\limits_{i \in A} x_{iK}</tex> ограничено величиной минимального разреза части сети с истоками <tex>J_i(i \in A)</tex> и стоком <tex>I_K</tex>. Тем не менее, это значение
Строка 95: Строка 79:
 
Работа с максимальным потоком в расширенной сети занимает <tex>O (m n^3)</tex> шагов, проверка может быть сделана с такой же скоростью. Для решения <tex>Q \mid pmtn; r_{i} \mid L_{max}</tex> мы используем бинарный поиск, а значит, получаем алгоритм с <tex>\varepsilon</tex>-приближенной  сложностью <tex>O (mn^3(\log(n) + \log(1 / \varepsilon) + \log(\max\limits_{i=1}^{n} p_i)) </tex>, потому как <tex>L_{max}</tex>, ограничен <tex>n \max\limits_{i=1}^{n}p_i</tex>, при <tex>s_1 = 1</tex>.
 
Работа с максимальным потоком в расширенной сети занимает <tex>O (m n^3)</tex> шагов, проверка может быть сделана с такой же скоростью. Для решения <tex>Q \mid pmtn; r_{i} \mid L_{max}</tex> мы используем бинарный поиск, а значит, получаем алгоритм с <tex>\varepsilon</tex>-приближенной  сложностью <tex>O (mn^3(\log(n) + \log(1 / \varepsilon) + \log(\max\limits_{i=1}^{n} p_i)) </tex>, потому как <tex>L_{max}</tex>, ограничен <tex>n \max\limits_{i=1}^{n}p_i</tex>, при <tex>s_1 = 1</tex>.
  
Задача <tex>Q \mid pmtn; r_i \mid C_{max}</tex> представляет собой частный случай <tex>Q \mid pmtn; r_i \mid L_{max}</tex>, и может быть решена более эффективно<ref>Описано в Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. {{---}} 133 стр.</ref>.
+
Задача <tex>Q \mid pmtn; r_i \mid C_{max}</tex> представляет собой частный случай <tex>Q \mid pmtn; r_i \mid L_{max}</tex>, и может быть решена более эффективно. Лабетоль (Labetoulle J.), Лаулер (Lawler E.L.), Ленстра (Lenstra. J.K.), и Ринной Кан (Rinnooy Kan A.H.G.) разработали алгоритм работающий за <tex> O(n \log(n) + mn) </tex> специально для этого случая.
 
 
==Примечания==
 
<references/>
 
  
 
==Источники информации==
 
==Источники информации==
* Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. {{---}} 129 {{---}} 133 стр. {{---}} ISBN 978-3-540-69515-8
+
* Peter Brucker. «Scheduling Algorithms» {{---}} «Springer», 2006 г. 129 {{---}} 133 стр. {{---}} ISBN 978-3-540-69515-8
  
 
[[Категория: Теория расписаний]]
 
[[Категория: Теория расписаний]]

Пожалуйста, учтите, что любой ваш вклад в проект «Викиконспекты» может быть отредактирован или удалён другими участниками. Если вы не хотите, чтобы кто-либо изменял ваши тексты, не помещайте их сюда.
Вы также подтверждаете, что являетесь автором вносимых дополнений, или скопировали их из источника, допускающего свободное распространение и изменение своего содержимого (см. Викиконспекты:Авторские права). НЕ РАЗМЕЩАЙТЕ БЕЗ РАЗРЕШЕНИЯ ОХРАНЯЕМЫЕ АВТОРСКИМ ПРАВОМ МАТЕРИАЛЫ!

Чтобы изменить эту страницу, пожалуйста, ответьте на приведённый ниже вопрос (подробнее):

Отменить | Справка по редактированию (в новом окне)

Шаблоны, используемые на этой странице: