Splay-дерево — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 39: Строка 39:
 
=Анализ операции splay=
 
=Анализ операции splay=
  
Амортизационный анализ сплей-дерева проводится с помощью метода потенциалов. Потенциалом рассматриваемого дерева назовём сумму рангов его вершин. Ранг вершины <tex>v</tex> — это величина, обозначаемая <tex>r(v)</tex> и равная <tex>\log_2 C(v)</tex>, где <tex>C(v)</tex> — количество вершин в поддереве с корнем в <tex>v</tex>.
+
Амортизационный анализ сплей-дерева проводится с помощью метода потенциалов. Потенциалом рассматриваемого дерева назовём сумму рангов его вершин. Ранг вершины <tex>x</tex> — это величина, обозначаемая <tex>r(x)</tex> и равная <tex>\log_2 C(x)</tex>, где <tex>C(x)</tex> — количество вершин в поддереве с корнем в <tex>x</tex>.
  
 
{{Лемма
 
{{Лемма
 
|statement=
 
|statement=
Амортизированное время операции splay вершины <tex>v</tex> в дереве с корнем <tex>t</tex> не превосходит <tex>3r(t) - 3r(v) + 1</tex>
+
Амортизированное время операции splay вершины <tex>x</tex> в дереве с корнем <tex>t</tex> не превосходит <tex>3r(t) - 3r(x) + 1</tex>
  
 
|proof=
 
|proof=
Проанализируем каждый шаг операции splay. Пусть <tex>r'</tex> и <tex>r</tex> — ранги вершин после шага и до него соответственно, <tex>u</tex> — предок вершины <tex>v</tex>, а <tex>w</tex> — предок <tex>u</tex> (если есть).
+
Проанализируем каждый шаг операции splay. Пусть <tex>r'</tex> и <tex>r</tex> — ранги вершин после шага и до него соответственно, <tex>p</tex> — предок вершины <tex>x</tex>, а <tex>g</tex> — предок <tex>p</tex> (если есть).
  
 
Разберём случаи в зависимости от типа шага:
 
Разберём случаи в зависимости от типа шага:
  
'''Zig'''. Поскольку выполнен один поворот, то время амортизированное время выполнения шага <tex>T = 1 + r'(v) + r'(u) - r(v) - r(u)</tex> (поскольку только у вершин <tex>v</tex> и <tex>u</tex> меняется ранг). Ранг вершины <tex>u</tex> уменьшился, поэтому <tex>T \le 1 + r'(v) - r(v)</tex>. Ранг вершины <tex>v</tex> увеличился, поэтому <tex>r'(v) - r(v) \ge 0</tex>. Следовательно, <tex>T \le 1 + 3r'(v) - 3r(v)</tex>.
+
'''Zig'''. Поскольку выполнен один поворот, то время амортизированное время выполнения шага <tex>T = 1 + r'(x) + r'(p) - r(x) - r(p)</tex> (поскольку только у вершин <tex>x</tex> и <tex>p</tex> меняется ранг). Ранг вершины <tex>p</tex> уменьшился, поэтому <tex>T \le 1 + r'(x) - r(x)</tex>. Ранг вершины <tex>x</tex> увеличился, поэтому <tex>r'(x) - r(x) \ge 0</tex>. Следовательно, <tex>T \le 1 + 3r'(x) - 3r(x)</tex>.
  
'''Zig-zig'''. Выполнено два поворота, амортизированное время выполнения шага <tex>T = 2 + r'(v) + r'(u) + r'(w) - r(u) - r(v) - r(w)</tex>. Поскольку после поворотов поддерево с корнем в <tex>v</tex> будет содержать все вершины, которые были в поддереве с корнем в <tex>w</tex> (и только их), поэтому <tex>r'(v) = r(w)</tex>. Используя это равенство, получаем: <tex>T = 2 + r'(u) + r'(w) - r(v) - r(u) \le 2 + r'(u) + r'(w) - 2r(v)</tex>, поскольку <tex>r(v) \le r(u)</tex>.
+
'''Zig-zig'''. Выполнено два поворота, амортизированное время выполнения шага <tex>T = 2 + r'(x) + r'(p) + r'(g) - r(p) - r(x) - r(g)</tex>. Поскольку после поворотов поддерево с корнем в <tex>x</tex> будет содержать все вершины, которые были в поддереве с корнем в <tex>g</tex> (и только их), поэтому <tex>r'(x) = r(g)</tex>. Используя это равенство, получаем: <tex>T = 2 + r'(p) + r'(g) - r(x) - r(p) \le 2 + r'(p) + r'(g) - 2r(x)</tex>, поскольку <tex>r(x) \le r(p)</tex>.
  
Далее, так как <tex>r'(u) \le r'(v)</tex>, получаем, что <tex>T \le 2 + r'(v) + r'(w) - 2r(v)</tex>.
+
Далее, так как <tex>r'(p) \le r'(x)</tex>, получаем, что <tex>T \le 2 + r'(x) + r'(g) - 2r(x)</tex>.
  
Мы утверждаем, что эта сумма не превосходит <tex>3(r'(v) - r(v))</tex>, то есть, что <tex>r(v) + r'(w) - 2r'(v) \le -2</tex>. Преобразуем полученное выражение следующим образом: <tex>(r(v) - r'(v)) + (r'(w) - r'(v)) = \log_2 \frac{C(v)}{C'(v)} + \log_2 \frac{C'(w)}{C'(v)}</tex>.
+
Мы утверждаем, что эта сумма не превосходит <tex>3(r'(x) - r(x))</tex>, то есть, что <tex>r(x) + r'(g) - 2r'(x) \le -2</tex>. Преобразуем полученное выражение следующим образом: <tex>(r(x) - r'(x)) + (r'(g) - r'(x)) = \log_2 \frac{C(x)}{C'(x)} + \log_2 \frac{C'(g)}{C'(x)}</tex>.
  
Из рисунка видно, что <tex>C'(w) + C(v) \le C'(v)</tex>, значит, сумма выражений под логарифмами не превосходит единицы. Далее, рассмотрим сумму логарифмов <tex>\log_2 x + \log_2 y = \log_2 xy</tex>. При <tex>x + y \le 1</tex> произведение <tex>xy</tex> по неравенству между средними не превышает <tex>1/4</tex>. А поскольку логарифм - функция возрастающая, то <tex>\log_2 xy \le -2</tex>, что и является требуемым неравенством.
+
Из рисунка видно, что <tex>C'(g) + C(x) \le C'(x)</tex>, значит, сумма выражений под логарифмами не превосходит единицы. Далее, рассмотрим сумму логарифмов <tex>\log_2 a + \log_2 b = \log_2 ab</tex>. При <tex>a + b \le 1</tex> произведение <tex>ab</tex> по неравенству между средними не превышает <tex>1/4</tex>. А поскольку логарифм - функция возрастающая, то <tex>\log_2 ab \le -2</tex>, что и является требуемым неравенством.
  
'''Zig-zag'''. Выполнено два поворота, амортизированное время выполнения шага <tex>T = 2 + r'(v) + r'(u) + r'(w) - r(v) - r(u) - r(w)</tex>. Поскольку <tex>r'(v) = r(w)</tex>, то <tex>T = 2 + r'(u) + r'(w) - r(v) - r(u)</tex>. Далее, так как <tex>r(v) \le r(u)</tex>, то <tex>T \le 2 + r'(u) + r'(w) - 2r(v)</tex>.
+
'''Zig-zag'''. Выполнено два поворота, амортизированное время выполнения шага <tex>T = 2 + r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)</tex>. Поскольку <tex>r'(x) = r(g)</tex>, то <tex>T = 2 + r'(p) + r'(g) - r(x) - r(p)</tex>. Далее, так как <tex>r(x) \le r(p)</tex>, то <tex>T \le 2 + r'(p) + r'(g) - 2r(x)</tex>.
  
Мы утверждаем, что эта сумма не превосходит <tex>2(r'(v) - r(v))</tex>, то есть, что <tex>r'(u) + r'(w) - 2r'(v) \le -2</tex>. Но, поскольку <tex>r'(u) + r'(w) - 2r'(v) = \log_2 \frac{C'(u)}{C'(v)} + \log_2 \frac{C'(w)}{C'(v)} \le -2</tex> - аналогично доказанному ранее, что и требовалось доказать.
+
Мы утверждаем, что эта сумма не превосходит <tex>2(r'(x) - r(x))</tex>, то есть, что <tex>r'(p) + r'(g) - 2r'(x) \le -2</tex>. Но, поскольку <tex>r'(p) + r'(g) - 2r'(x) = \log_2 \frac{C'(p)}{C'(x)} + \log_2 \frac{C'(g)}{C'(x)} \le -2</tex> - аналогично доказанному ранее, что и требовалось доказать.
  
Итого, получаем, что амортизированное время шага zig-zag не превосходит <tex>2(r'(v) - r(v)) \le 3(r'(v) - r(v))</tex>.
+
Итого, получаем, что амортизированное время шага zig-zag не превосходит <tex>2(r'(x) - r(x)) \le 3(r'(x) - r(x))</tex>.
  
Поскольку за время выполнения операции splay выполняется не более одного шага типа zig, то суммарное время не будет превосходить <tex>3r(t) - 3r(v) + 1</tex>, поскольку утроенные ранги промежуточных вершин сокращаются (входят в сумму как с плюсом, так и с минусом).
+
Поскольку за время выполнения операции splay выполняется не более одного шага типа zig, то суммарное время не будет превосходить <tex>3r(t) - 3r(x) + 1</tex>, поскольку утроенные ранги промежуточных вершин сокращаются (входят в сумму как с плюсом, так и с минусом).
 
}}
 
}}
  

Версия 21:21, 13 апреля 2012

Сплей-дерево (Splay-tree) — двоичное дерево поиска, позволяющее находить быстрее те данные, которые использовались недавно. Относится к разряду сливаемых деревьев. Сплей-дерево было придумано Робертом Тарьяном и Даниелем Слейтером в 1983 году.

Основной идеей работы дерева является эвристика "Move to Root", перетаскивающая найденную вершину в корень почти после каждой операции. Для [math]p[/math] - предка вершины [math]x[/math] "Move to Root" совершает повороты вокруг ребра [math](x, p)[/math], пока [math]x[/math] не окажется корнем дерева.

Операции со splay-деревом

Splay(Tree, x)

"Splay" так же как и "Move to Root" перетаскивает вершину в корень дерева, но при этом она использует другую последовательность поворотов. Пока [math]x[/math] не является корнем дерева выполняется следующее:

Zig

Если [math]p[/math] - корень дерева с сыном [math]x[/math], то совершаем один поворот вокруг ребра [math](x, p)[/math], делая [math]x[/math] корнем дерева. Данный случай является крайним и выполняется только один раз в конце, если изначальная глубина [math]x[/math] была нечетной.

Zig - поворот

Zig-Zig

Если [math]p[/math] - не корень дерева, а [math]x[/math] и [math]p[/math] - оба левые или оба правые дети, то делаем поворот ребра [math](p, g)[/math], где [math]g[/math] отец [math]p[/math], а затем поворот ребра [math](x, p)[/math].

Zig-zig - поворот

Zig-Zag

Если [math]p[/math] - не корень дерева и [math]x - левый ребенок, а \lt tex\gt p[/math] - правый, или наоборот, то делаем поворот вокруг ребра [math](x, p)[/math], а затем поворот нового ребра [math](x, g)[/math], где [math]g[/math] - бывший родитель [math]p[/math].

Zig-zag - поворот

Данная операция занимает [math]O(d)[/math] времени, где [math]d[/math] - длина пути от [math]x[/math] до корня. В результате этой операции [math]x[/math] становится корнем дерева, а расстояние до корня от каждой вершины сокращается примерно пополам, что связано с разделением случаев "zig-zig" и "zig-zag".

Find(Tree, key)

Эта операция выполняется как для обычного бинарного дерева, только после нее запускается операция Splay.

Merge(Tree1, Tree2)

У нас есть два дерева [math]Tree1[/math] и [math]Tree2[/math], причём подразумевается, что все элементы первого дерева меньше элементов второго. Запускаем Splay от самого большого элемента в дереве [math]Tree1[/math] (пусть это элемент [math]i[/math]). После этого корень [math]Tree1[/math] содержит элемент [math]i[/math], при этом у него нет правого ребёнка. Делаем [math]Tree2[/math] правым поддеревом [math]i[/math] и возвращаем полученное дерево.

Split(Tree, x)

Запускаем Splay от элемента [math]x[/math] и возвращаем два дерева, полученные отсечением правого или левого поддерева от корня, в зависимости от того, содержит корень элемент больше или не больше, чем [math]x[/math].

Add(Tree, x)

Запускаем Split(Tree, x), который нам возвращает деревья [math]Tree[/math]1 и [math]Tree2[/math], их подвешиваем к [math]x[/math] как левое и правое поддеревья соответственно.

Remove(Tree, x)

Запускаем Splay от [math]x[/math] элемента и возвращаем Merge от его детей.

Анализ операции splay

Амортизационный анализ сплей-дерева проводится с помощью метода потенциалов. Потенциалом рассматриваемого дерева назовём сумму рангов его вершин. Ранг вершины [math]x[/math] — это величина, обозначаемая [math]r(x)[/math] и равная [math]\log_2 C(x)[/math], где [math]C(x)[/math] — количество вершин в поддереве с корнем в [math]x[/math].

Лемма:
Амортизированное время операции splay вершины [math]x[/math] в дереве с корнем [math]t[/math] не превосходит [math]3r(t) - 3r(x) + 1[/math]
Доказательство:
[math]\triangleright[/math]

Проанализируем каждый шаг операции splay. Пусть [math]r'[/math] и [math]r[/math] — ранги вершин после шага и до него соответственно, [math]p[/math] — предок вершины [math]x[/math], а [math]g[/math] — предок [math]p[/math] (если есть).

Разберём случаи в зависимости от типа шага:

Zig. Поскольку выполнен один поворот, то время амортизированное время выполнения шага [math]T = 1 + r'(x) + r'(p) - r(x) - r(p)[/math] (поскольку только у вершин [math]x[/math] и [math]p[/math] меняется ранг). Ранг вершины [math]p[/math] уменьшился, поэтому [math]T \le 1 + r'(x) - r(x)[/math]. Ранг вершины [math]x[/math] увеличился, поэтому [math]r'(x) - r(x) \ge 0[/math]. Следовательно, [math]T \le 1 + 3r'(x) - 3r(x)[/math].

Zig-zig. Выполнено два поворота, амортизированное время выполнения шага [math]T = 2 + r'(x) + r'(p) + r'(g) - r(p) - r(x) - r(g)[/math]. Поскольку после поворотов поддерево с корнем в [math]x[/math] будет содержать все вершины, которые были в поддереве с корнем в [math]g[/math] (и только их), поэтому [math]r'(x) = r(g)[/math]. Используя это равенство, получаем: [math]T = 2 + r'(p) + r'(g) - r(x) - r(p) \le 2 + r'(p) + r'(g) - 2r(x)[/math], поскольку [math]r(x) \le r(p)[/math].

Далее, так как [math]r'(p) \le r'(x)[/math], получаем, что [math]T \le 2 + r'(x) + r'(g) - 2r(x)[/math].

Мы утверждаем, что эта сумма не превосходит [math]3(r'(x) - r(x))[/math], то есть, что [math]r(x) + r'(g) - 2r'(x) \le -2[/math]. Преобразуем полученное выражение следующим образом: [math](r(x) - r'(x)) + (r'(g) - r'(x)) = \log_2 \frac{C(x)}{C'(x)} + \log_2 \frac{C'(g)}{C'(x)}[/math].

Из рисунка видно, что [math]C'(g) + C(x) \le C'(x)[/math], значит, сумма выражений под логарифмами не превосходит единицы. Далее, рассмотрим сумму логарифмов [math]\log_2 a + \log_2 b = \log_2 ab[/math]. При [math]a + b \le 1[/math] произведение [math]ab[/math] по неравенству между средними не превышает [math]1/4[/math]. А поскольку логарифм - функция возрастающая, то [math]\log_2 ab \le -2[/math], что и является требуемым неравенством.

Zig-zag. Выполнено два поворота, амортизированное время выполнения шага [math]T = 2 + r'(x) + r'(p) + r'(g) - r(x) - r(p) - r(g)[/math]. Поскольку [math]r'(x) = r(g)[/math], то [math]T = 2 + r'(p) + r'(g) - r(x) - r(p)[/math]. Далее, так как [math]r(x) \le r(p)[/math], то [math]T \le 2 + r'(p) + r'(g) - 2r(x)[/math].

Мы утверждаем, что эта сумма не превосходит [math]2(r'(x) - r(x))[/math], то есть, что [math]r'(p) + r'(g) - 2r'(x) \le -2[/math]. Но, поскольку [math]r'(p) + r'(g) - 2r'(x) = \log_2 \frac{C'(p)}{C'(x)} + \log_2 \frac{C'(g)}{C'(x)} \le -2[/math] - аналогично доказанному ранее, что и требовалось доказать.

Итого, получаем, что амортизированное время шага zig-zag не превосходит [math]2(r'(x) - r(x)) \le 3(r'(x) - r(x))[/math].

Поскольку за время выполнения операции splay выполняется не более одного шага типа zig, то суммарное время не будет превосходить [math]3r(t) - 3r(x) + 1[/math], поскольку утроенные ранги промежуточных вершин сокращаются (входят в сумму как с плюсом, так и с минусом).
[math]\triangleleft[/math]

Литература