Коды Грея для перестановок
| Определение: |
| Элементарная транспозиция (англ. Adjacent transposition) — перестановка местами двух соседних элементов. |
Коды Грея для перестановок (англ. Gray code for permutation) — упорядочение перестановок, при котором соседние перестановки отличаются только элементарной транспозицией.
Построение кода Грея для перестановок
Будем строить код Грея для длины . Предположим, что нам известен код Грея для перестановок длиной . Возьмем первую перестановку из известного нам кода. Она имеет следующий вид:
Сначала запишем число в начало этой перестановки, после чего будем двигать его вправо элементарными транспозициями (подчёркнуты пары переставляемых элементов).
Получим различных перестановок, отличающихся одной элементарной транспозицией. Возьмем следующую перестановку из кода Грея для перестановок длины и припишем в конце число . Эта перестановка отличается на одну элементарную транспозицию (последние элементы совпадают, а префиксы длины отличаются на элементарную транспозицию). Пусть она имеет следующий вид:
Элемент записываем в конец и начинаем "двигать" его влево:
Продолжаем аналогично. Для каждой перестановки дописываем в один конец (поочерёдно), и с помощью элементарных транспозиций двигаем в другой конец, при этом добавляя каждую промежуточную перестановку в список.
Таким образом получаем для каждой перестановки длиной (всего штук) по новых перестановок, в сумме перестановок. Все они различны, так как для любых двух перестановок из нового кода Грея элемент стоит на разных позициях,а если стоит на одной и той же позиции, то эти перестановки образованы от разных перестановок длиной . Так же все соседние перестановки отличаются ровно в одной элементарной транспозиции. Итого, мы получили список из различных перестановок длиной , причём соседние отличаются в одной элементарной транспозиции.
Примеры кодов Грея для перестановок
Перестановки для n = 2
| Номер | Перестановка |
|---|---|
Перестановки для n = 3 (подчёркнуты пары переставляемых элементов)
| Номер | Перестановка | Пояснение |
|---|---|---|
| берем первую перестановку и добавляем в начало тройку | ||
| двигаем до последней позиции | ||
| берем следующую перестановку и записываем тройку в конец | ||
| двигаем в начало | ||
Псевдокод получения кода Грея
Получаем код Грея рекурсивно, в базовом случае возвращаем список из одной перестановки .
list<list<int>> gray_code(n):
if n == 1
return [{1}] //возращаем список из одной перестановки
else
list<list<int>> result = [] //пустой список
list<list<int>> perms = gray_code(n - 1) //perms — перестановки из n - 1 элемента
bool backward = false //переменная которая говорит с какой стороны заполнять перестановку
for perm in perms //perm — текущая перестановка
if backward
list<int> current = concat(perm, {n}) //дописываем {n} в конец perm
result.append(current) //добавляем в ответ перестановку current
for i = n downto 2
swap(current[i - 1], current[i]) //переставляем n
result.append(current) //добавляем в ответ перестановку current
else
list<int> current = concat({n}, perm) //дописываем {n} в начало perm
result.append(current) //добавляем в ответ перестановку current
for i = 1 to n - 1
swap(current[i], current[i + 1]) //переставляем n
result.append(current) //добавляем в ответ перестановку current
backward = not backward //меняем состояние backward
return result //возвращаем ответ в виде списка
Реализация в нерекурсивном виде. Алгоритм Джонсона-Троттера
Идея
Сопоставим каждому элементу перестановки направление . Будем указывать направление при помощи стрелок ← ("влево") или →("вправо"). Назовём элемент подвижным, если по направлению стрелки стоит элемент меньше его. Например, для , подвижными являются элементы и . На каждой итерации алгоритма будем искать наибольший подвижный элемент и менять местами с элементом, который стоит по направлению стрелки. После чего поменяем направление стрелок на противоположное у всех элементов больших текущего. Изначально .
Пример работы алгоритма для n = 3
Псевдокод
//Элементы нумеруются начиная с 1
list<list<int>> gray_code(n):
list<int> perm = {1, ... , n}
list<char> dir = {←, ... , ←}
list<list<int>> result
while true
result.append(perm); //добавляем в ответ текущую перестановку
int id = -1; //индекс наибольшего подвижного элемента
for i = 1 to n
if (perm[i] - подвижный) and ((id == -1) or (perm[i] > perm[id]))
id = i
if (id == -1) break //не нашли подвижного элемента
for i = 1 to n
if (perm[i] > perm[id])
reverse(dir[i]) //меняем направление стрелки
swap(id) //меняем элемент perm[id], dir[id] c элементом по направлению стелки
return result
Доказательство корректности
Очевидно, что требование о том, что каждая генерируемая перестановка отличается от предыдущей транспозицией двух соседних элементов выполнено исходя из самого алгоритма. Осталось доказать, что таким образом мы сгенерируем все перестановки.
Будем использовать обозначения:
- — элемент с заданным направлением(компонента).
- — перестановка с номером .
- — перестановка с номером без элемента .
| Утверждение: |
Число в перестановке не является подвижным элементом тогда и только тогда, когда первая компонента перестановки есть или последняя компонента есть . |
| Лемма: |
Если в перестановке есть подвижный элемент , то также определены перестановки . Причём, . |
| Доказательство: |
| Заметим, что если в перестановке есть подвижный элемент , то после транспозиции его с соседним элементом(по направлению стрелки), нам нужно будет заменить направление стрелок у всех элементов больше . Так как больше любого элемента из перестановки, то направление стрелки у него тоже изменится. По нашему утверждению, либо в новой перестановке окажется компонента на первой позиции, либо компонента на последней позиции. В обоих случаях окажется подвижным элементом в следующих перестановках. Так как в следующих перестановках подвижным элементом будет только , то . |
Теперь докажем основную лемму.
| Лемма: |
Алгоритм Джонсона-Троттера строит все перестановки из элементов, причём каждая перестановка отличаются от предыдущей транспозицией двух соседних элементов. |
| Доказательство: |
|
Доказывать будем по индукции. Для очевидно. Предположим, что для алгоритм строит перестановки корректно. Докажем, что алгоритм будет корректно строить перестановки и для элементов. Разобьём все перестановок на блоки по (подряд). В силу вышедоказанной леммы в каждом блоке , если начало группы. Значит, в каждой группе какая-то перестановка из элемента дополняется до перестановки из всеми возможными способами. Теперь докажем, что на переход между блоками элемент никак не влияет. Заметим, что при переходе между блоками является неподвижным элементом. В силу нашего утверждения стоит либо на первой, либо на последней позиции. Так как больше любого элемента, то никакой подвижный элемент не может указывать на . В силу этих фактов никак не повлияет на переход между блоками. Из этого можно сделать вывод, что при переходе между блоками перестановки строятся так же, как и перестановки из элемента, а каждая такая перестановка дополняется до перестановки из элементов всеми возможными способами. Корректность алгоритма доказана. |
Асимптотика
Поговорим об асиптотике. Снова разобьём наши перестановки на блоки по элементов. Немного модифицируем алгоритм. Заметим, что в каждом блоке нам нужно искать максимальный элемент только один раз. В остальных случаях этим элементом будет . Следовательно, менять направление стрелок нужно тоже только один раз(в остальных случаях менять направления не нужно, так как - подвижный элемент, а менять направление стрелок нужно только у бóльших элементов). Следовательно, блок выполняется за . Всего блоков . Общая асимптотика .
Сравнение с рекурсивным алгоритмом
Главным приемуществом алгоритма Джонсона-Троттера является то, что нам не нужно хранить все предыдущие перестановки (из элемента), а только текущую. Следовательно, этот алгоритм потребляет только памяти. Также, из-за нерекурсивности этот алгоритм работает быстрее.
Интересный факт
Существует более общая формулировке задачи — для двух соседних перестановок должно выполняться, что позиции одинаковых чисел в них отличаются не более, чем на единицу. Для этой формулировки верно, что для любой перестановки число различных перестановок , которые могут стоять после , равно числу Фибоначчи. Этот факт был открыт студентом нашего университета.
Сведение задачи построения кода Грея для перестановок к графам
Последовательность перестановок, полученная с помощью данного алгоритма имеет интересную интерпретацию. Так, если рассмотреть граф, вершины которого соответствуют всем перестановкам и в котором две вершины, соответствующие перестановкам и , соединены ребром, если образуется из однократной транспозицией соседних элементов, то полученная последовательность является гамильтоновым путем в этом графе.
См. также
Источники информации
- Романовский И.В. Дискретный Анализ - Санкт-Петербург, 2003. - стр. 39-41 - ISBN 5-94157-330-8
- Федоряева Т.И. Комбинаторные алгоритмы - Новосибирск, 2011. - стр. 36-46 - ISBN 978-5-4437-0019-9
- Ананий Левитин, Алгоритмы. Введение в разработку и анализ - Москва. Санкт-Петербург. Киев, 2006. - стр. 226 - 229 - ISBN 5-8459-0987-2