Изменения

Перейти к: навигация, поиск

Теорема Менгера

51 байт добавлено, 02:38, 28 октября 2011
м
Нет описания правки
|statement=Если в сети, где все пропускные способности ребер равны 1, существует целочисленный поток величиной <tex>L</tex> то существует и <tex>L</tex> реберно непересекающихся путей.
|proof=
:В начале поймем, что если поток не нулевой, то существует маршрут из <tex>u</tex> в <tex>v</tex> лежащий только на ребрах с потоком равным 1. В самом деле, если бы такого маршрута не существовало, то можно было бы выделить множество вершин до которых такие маршруты из вершины <tex>u</tex> существуют, не включающее <tex>uv</tex>, и по нему построить разрез. Поток через такой разрез, очевидно равен нулю, видим противоречие (т.к. <tex>f(SU,TV)=|f|</tex>, смотри [[Разрез, лемма о потоке через разрез|первую лемму]]).
:Итак, найдем какой-нибудь маршрут из <tex>u</tex> в <tex>v</tex> лежащий только на ребрах где поток равен 1. Удалив все ребра находящиеся в этом маршруте и оставив все остальное неизменным, придем к целочисленному потоку величиной <tex>L-1</tex>. Ясно, что можно повторить тоже самое еще <tex>L-1</tex> раз, и, таким образом мы выделим <tex>L</tex> реберно непересекающихся маршрутов.
223
правки

Навигация