Иерархия Хомского формальных грамматик — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Класс 1)
(Класс 2)
Строка 19: Строка 19:
  
 
== Класс 2 ==
 
== Класс 2 ==
Класс 2 составляют [[контекстно-свободные грамматики]].
+
Второй класс составляют [[Контекстно-свободные грамматики, вывод, лево- и правосторонний вывод, дерево разбора|контекстно-свободные грамматики]].
 
{{Определение
 
{{Определение
 
|definition =
 
|definition =
'''Контекстно-свободные грамматики''' - это [[формальные грамматики]],  
+
'''Контекстно-свободные грамматики''' - это те формальные грамматики, всякое правило из <tex>P</tex> которых имеет вид <tex>A \rightarrow\beta</tex>, где <tex>A\in N </tex>, <tex>\beta \in \{\Sigma \cup N\}^{+}</tex>.}}
всякое правило из <tex>P</tex> которых имеет вид <tex>A \rightarrow\beta</tex>, где <tex>A\in N </tex>, <tex>\beta \in \{\Sigma \cup N\}^{+}</tex>.}}
+
 
 
== Класс 3 ==
 
== Класс 3 ==
 
Класс 3 составляют [[праволинейные(автоматные) грамматики]].
 
Класс 3 составляют [[праволинейные(автоматные) грамматики]].

Версия 07:43, 3 ноября 2011

Определение:
Иерархия Хомского — классификация формальных грамматик и задаваемых ими языков, согласно которой они делятся на 4 класса по их условной сложности.

Класс 0

К нулевому классу относятся все формальные грамматики. Элементы этого класса называются неограниченные грамматики, поскольку не накладывается никаких ограничений. Практического применения в силу своей сложности такие грамматики не имеют.

Класс 1

Первый класс представлен неукорачивающими и контекстно-зависимыми грамматиками.

Определение:
Неукорачивающие грамматики - это те формальные грамматики, всякое правило из [math]P[/math] которых имеет вид [math]\alpha\rightarrow\beta[/math], где [math]\alpha , \beta \in \{\Sigma\cup N\}^{+}[/math] и [math]|\alpha|\leq|\beta|[/math](возможно правило [math]$S$ \to \varepsilon[/math], но тогда [math]$S$[/math] не встречается в правых частях правил.


Определение:
Контекстно-зависимые грамматики - это те формальные грамматики, всякое правило из [math]P[/math] которых имеет вид [math]\alpha A \beta\rightarrow\alpha\gamma\beta[/math], где [math]\alpha , \beta \in \{\Sigma\cup N\}^{*}[/math], [math]A \in N[/math] и [math]\gamma \in \{\Sigma\cup N\}^{+}[/math](возможно правило [math]$S$ \to \varepsilon[/math], но тогда [math]$S$[/math] не встречается в правых частях правил).


Как будет показано далее неукорачивающие грамматики эквивалентны контекстно зависимым.

Класс 2

Второй класс составляют контекстно-свободные грамматики.

Определение:
Контекстно-свободные грамматики - это те формальные грамматики, всякое правило из [math]P[/math] которых имеет вид [math]A \rightarrow\beta[/math], где [math]A\in N [/math], [math]\beta \in \{\Sigma \cup N\}^{+}[/math].


Класс 3

Класс 3 составляют праволинейные(автоматные) грамматики.

Определение:
Праволинейные(автоматные) грамматики - это формальные грамматики, всякое правило из [math]P[/math] которых имеет вид [math]A \rightarrow tB[/math] либо [math]A \rightarrow t[/math], где [math]A\in N[/math],[math]B\in N[/math], [math]t\in \Sigma [/math].