Неукорачивающие и контекстно-зависимые грамматики, эквивалентность — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
{{Определение
 
|definition = Грамматика называется '''неукорачивающей''', если все правила имеют вид <tex>\alpha \to \beta</tex>, где <tex>|\alpha| \le |\beta|</tex> (возможно правило <tex>$S$  \to \varepsilon</tex>, но тогда <tex>$S$</tex> не встречается в правых частях правил).
 
}}
 
 
{{Определение
 
|definition = Грамматика называется '''контекстно-зависимой''', если все правила имеют вид <tex>\alpha A \beta \to \alpha \gamma \beta</tex>, где <tex>A</tex> - нетерминал, <tex>\alpha</tex> и <tex>\beta</tex> строки из нетерминалов, <tex>\gamma</tex> не пуста (возможно правило <tex>$S$  \to \varepsilon</tex>, но тогда <tex>$S$</tex> не встречается в правых частях правил).
 
}}
 
 
 
{{Теорема
 
{{Теорема
|statement=Для любой неукорачивающей грамматики <tex>\Gamma_1</tex> существует эквивалентная контекстно-зависимая грамматика <tex>\Gamma_2</tex>.
+
|statement=Для любой [[Иерархия Хомского формальных грамматик#Класс 1 | неукорачивающей]] грамматики <tex>\Gamma_1</tex> существует эквивалентная [[Иерархия Хомского формальных грамматик#Класс 1 |контекстно-зависимая]] грамматика <tex>\Gamma_2</tex>.
 
|proof=
 
|proof=
  
Рассмотрим правило из <tex>\Gamma_1</tex>, оно имеет вид <tex>X_1 X_2 \ldots X_n \to Y_1 Y_2 \ldots Y_m</tex>, где <tex>m \ge n</tex>
+
Рассмотрим правило из <tex>\Gamma_1 = \langle \Sigma, N_1, S \in N_1, P \in N_1^{*}\times (\Sigma\cup N_1)^{*}\rangle</tex>. Будем строить правила для грамматики  <tex>\Gamma_2</tex>. Каждое правило <tex>X_1 X_2 \ldots X_n \to Y_1 Y_2 \ldots Y_m</tex>, где <tex>m \ge n</tex> из <tex> \Gamma_1</tex> заменим набором следующих правил.
добавим в <tex>\Gamma_2</tex> следующий набор правил:
 
  
 
<tex>
 
<tex>
Строка 29: Строка 20:
 
</tex>
 
</tex>
  
Где нетерминалы <tex>Z_{*}</tex> свои для каждого правила из <tex>\Gamma_1</tex>
+
Причем нетерминалы <tex>Z_{*}</tex> свои для каждого правила из <tex>\Gamma_1</tex> и <tex>Z_{*} \notin N_1</tex>.
  
В словах языка задаваемого грамматикой не может быть нетерминалов, поэтому если в процессе вывода будет применено правило <tex>X_1 X_2 \ldots X_n \to Z_1 X_2 \ldots X_n</tex>, то в последствии должны быть применены все остальные правила. В противном случае нетерминалы <tex>Z_1</tex> или <tex>Z_n</tex> будут присутствовать в выведенном слове.
+
В словах языка задаваемого грамматикой не может быть нетерминалов, поэтому если в процессе вывода будет применено правило <tex>X_1 X_2 \ldots X_n \to Z_1 X_2 \ldots X_n</tex>, то впоследствии должны быть применены все остальные правила. В противном случае нетерминалы <tex>Z_1</tex> или <tex>Z_n</tex> будут присутствовать в выведенном слове.
  
Получившаяся грамматика <tex>\Gamma_2</tex> является эквивалентной грамматике <tex>\Gamma_1</tex>, так в результате применения набора правил строка <tex>X_1 X_2 \ldots X_n</tex> перейдёт в строку <tex>Y_1 Y_2 \ldots Y_m</tex>. Каждый набор правил либо будет применён полностью, либо не будет применён полностью
+
Правида вида <tex>$S$  \to \varepsilon</tex> оставляем без изменений.
  
Получившаяся грамматика <tex>\Gamma_2</tex> является контекстно-зависимой.
+
По [[Иерархия Хомского формальных грамматик#Класс 1|определению]] в <tex>\Gamma_1</tex> нет правил другого вида. Получившаяся грамматика <tex>\Gamma_2</tex> является эквивалентной грамматике <tex>\Gamma_1</tex>, так в результате применения набора правил строка <tex>X_1 X_2 \ldots X_n</tex> перейдёт в строку <tex>Y_1 Y_2 \ldots Y_m</tex>. Осталось заметить, что по [[Иерархия Хомского формальных грамматик#Класс 1|определению]] получившаяся грамматика <tex>\Gamma_2</tex> является контекстно-зависимой.
 
}}
 
}}
 
{{Утверждение
 
{{Утверждение
 
|statement=Любая контекстно-зависимая грамматика является неукорачивающей.
 
|statement=Любая контекстно-зависимая грамматика является неукорачивающей.
|proof= Так как в определении контекстно-зависимой грамматики <tex>\gamma</tex> не пуста, то <tex>|\alpha A \beta| \ge |\alpha \gamma \beta|</tex>, а поэтому эта грамматика является неукорачивающей.
+
|proof= Заметим, что в [[Иерархия Хомского формальных грамматик#Класс 1|определении контекстно-зависимой грамматики]] <tex>\gamma</tex> не пуста, поэтому <tex>|\alpha A \beta| \ge |\alpha \gamma \beta|</tex>. Следовательно такая грамматика является неукорачивающей по [[Иерархия Хомского формальных грамматик#Класс 1|определению]].
 
}}
 
}}
  
Таким образом, из того что по любой неукорачивающей грамматике можно построить эквивалентную ей контекстно-зависимую, а также любая контекстно-зависимая грамматика является неукорачивающей, следует, что множества языков задаваемых этими видами грамматик совпадают.
+
Поскольку из любой неукорачивающей грамматике можно построить эквивалентную ей контекстно-зависимую, а также любая контекстно-зависимая грамматика является неукорачивающей, следует, что множества языков задаваемых этими видами грамматик совпадают.

Версия 09:45, 3 ноября 2011

Теорема:
Для любой неукорачивающей грамматики [math]\Gamma_1[/math] существует эквивалентная контекстно-зависимая грамматика [math]\Gamma_2[/math].
Доказательство:
[math]\triangleright[/math]

Рассмотрим правило из [math]\Gamma_1 = \langle \Sigma, N_1, S \in N_1, P \in N_1^{*}\times (\Sigma\cup N_1)^{*}\rangle[/math]. Будем строить правила для грамматики [math]\Gamma_2[/math]. Каждое правило [math]X_1 X_2 \ldots X_n \to Y_1 Y_2 \ldots Y_m[/math], где [math]m \ge n[/math] из [math] \Gamma_1[/math] заменим набором следующих правил.

[math] \begin{tabular}{rcl} $X_1 X_2 X_3 \ldots X_n$ & $\to$&$ Z_1 X_2 X_3 \ldots X_n$\\ $Z_1 X_2 X_3 \ldots X_n$ & $\to$& $Z_1 Z_2 X_3 \ldots X_n$\\ $Z_1 Z_2 X_3 \ldots X_n$ & $\to$& $Z_1 Z_2 Z_3 \ldots X_n$\\ &$\ldots$&\\ $Z_1 Z_2 \ldots Z_{n-1} X_n$ &$\to$& $Z_1 Z_2 \ldots Z_{n-1} Z_n$\\ $Z_1 Z_2 Z_3 \ldots Z_n$ &$\to$& $Y_1 Z_2 Z_3 \ldots Z_n$\\ $Y_1 Z_2 Z_3 \ldots Z_n$ &$\to$& $Y_1 Y_2 Z_3 \ldots Z_n$\\ $Y_1 Y_2 Z_3 \ldots Z_n$ &$\to$& $Y_1 Y_2 Y_3 \ldots Z_n$\\ &$\ldots$&\\ $Y_1 Y_2 Y_3 \ldots Y_{n-1} Z_n$&$\to$& $Y_1 Y_2 Y_3 \ldots Y_{n-1} Y_n \ldots Y_m$\\ \end{tabular} [/math]

Причем нетерминалы [math]Z_{*}[/math] свои для каждого правила из [math]\Gamma_1[/math] и [math]Z_{*} \notin N_1[/math].

В словах языка задаваемого грамматикой не может быть нетерминалов, поэтому если в процессе вывода будет применено правило [math]X_1 X_2 \ldots X_n \to Z_1 X_2 \ldots X_n[/math], то впоследствии должны быть применены все остальные правила. В противном случае нетерминалы [math]Z_1[/math] или [math]Z_n[/math] будут присутствовать в выведенном слове.

Правида вида [math]$S$ \to \varepsilon[/math] оставляем без изменений.

По определению в [math]\Gamma_1[/math] нет правил другого вида. Получившаяся грамматика [math]\Gamma_2[/math] является эквивалентной грамматике [math]\Gamma_1[/math], так в результате применения набора правил строка [math]X_1 X_2 \ldots X_n[/math] перейдёт в строку [math]Y_1 Y_2 \ldots Y_m[/math]. Осталось заметить, что по определению получившаяся грамматика [math]\Gamma_2[/math] является контекстно-зависимой.
[math]\triangleleft[/math]
Утверждение:
Любая контекстно-зависимая грамматика является неукорачивающей.
[math]\triangleright[/math]
Заметим, что в определении контекстно-зависимой грамматики [math]\gamma[/math] не пуста, поэтому [math]|\alpha A \beta| \ge |\alpha \gamma \beta|[/math]. Следовательно такая грамматика является неукорачивающей по определению.
[math]\triangleleft[/math]

Поскольку из любой неукорачивающей грамматике можно построить эквивалентную ей контекстно-зависимую, а также любая контекстно-зависимая грамматика является неукорачивающей, следует, что множества языков задаваемых этими видами грамматик совпадают.