K-связность — различия между версиями
| Строка 40: | Строка 40: | ||
}} | }} | ||
| − | Подобная теорема справедлива и для реберной связности. То есть: | + | Подобная теорема справедлива и для реберной связности. То есть из [[Теорема Менгера, альтернативное доказательство|''теоремы Менгера для реберной <tex>k - </tex> связности'']] следует: |
| − | |||
| − | |||
| − | |||
| − | |||
{{Утверждение | {{Утверждение | ||
|statement= | |statement= | ||
Версия 10:36, 6 ноября 2011
Связность - одна из топологических характеристик графа.
| Определение: |
| Граф называется вершинно - связным, если удаление любых вершин оставляет граф связным. |
Вершинной связностью графа называется
вершинно - связен .
Полный граф .
| Определение: |
| Граф называется реберно - связным, если удаление любых ребер оставляет граф связным. |
Реберной связностью графа называется реберно - связен
При .
Рассмотрим граф .
Пусть - множество вершин/ребер/вершин и ребер.
Рассмотрим вершины и .
разделяет и , если и принадлежат разным компонентам связности графа , который получается удалением элементов множества из .
Справедливы следующие утверждения:
- Наименьшее число вершин, разделяющих две несмежные вершины и , равно наибольшему числу простых путей, не имеющих общих вершин, соединяющих и . (См.Теорема Менгера для вершинной связности)
Тогда:
| Утверждение: |
Граф является вершинно - связным любая пара его вершин соединена по крайней мере вершинно непересекающимися путями. |
Подобная теорема справедлива и для реберной связности. То есть из теоремы Менгера для реберной связности следует:
| Утверждение: |
Граф является реберно - связным любая пара его вершин соединена по крайней мере - реберно непересекающимися путями. |
Смотри также
Литература
- Харари Ф. Теория графов.[1] — М.: Мир, 1973. (Изд. 3, М.: КомКнига, 2006. — 296 с.)
- Форд Л., Фалкерсон Д., Потоки в сетях, пер. с англ., М., 1966