Пространство L p(E) — различия между версиями
(→Всюду плотность C в L_p) |
|||
Строка 145: | Строка 145: | ||
|statement= | |statement= | ||
Измеримые ограниченные функции образуют всюду плотное множество в <tex>L_p</tex> | Измеримые ограниченные функции образуют всюду плотное множество в <tex>L_p</tex> | ||
+ | |proof= | ||
+ | По абсолютной непрерывности интеграла для любого <tex>\varepsilon</tex> существует <tex>\delta</tex> такое, что для <tex>A \subset E</tex> из <tex>\mu A < \delta</tex> следует <tex>\int_A f^p d\mu < \varepsilon^p</tex>. | ||
}} | }} | ||
Строка 151: | Строка 153: | ||
Непрерывные функции образуют всюду плотное множество в <tex>L_p</tex> | Непрерывные функции образуют всюду плотное множество в <tex>L_p</tex> | ||
|proof= | |proof= | ||
− | Пусть <tex>f \in L_p</tex>, подберём ограниченную <tex>g</tex>, такую, что <tex>\|f - g\| < \varepsilon / 2</tex>. Пусть <tex>|g| \le K</tex>. По теореме Лузина существует такая непрерывная функция <tex>\varphi</tex>, что <tex>\mu E(\varphi \neq g) < \frac{\varepsilon^p}{(4K)^p}</tex> и <tex>|\varphi| \le K</tex>. Тогда <tex>\|\varphi - g\|^p = \int_E (\varphi - g)^p d\mu = \int_{E(\varphi \neq g)} (\varphi - g)^p \le (2K)^p \cdot \mu E(\varphi \neq g) < (\varepsilon / 2)^p</tex>, то есть <tex>\|\varphi - g\| | + | Пусть <tex>f \in L_p</tex>, подберём ограниченную <tex>g</tex>, такую, что <tex>\|f - g\| < \varepsilon / 2</tex>. Пусть <tex>|g| \le K</tex>. По теореме Лузина существует такая непрерывная функция <tex>\varphi</tex>, что <tex>\mu E(\varphi \neq g) < \frac{\varepsilon^p}{(4K)^p}</tex> и <tex>|\varphi| \le K</tex>. Тогда <tex>\|\varphi - g\|^p = \int_E (\varphi - g)^p d\mu = \int_{E(\varphi \neq g)} (\varphi - g)^p \le (2K)^p \cdot \mu E(\varphi \neq g) < (\varepsilon / 2)^p</tex>, то есть <tex>\|\varphi - g\| < \varepsilon / 2</tex>. |
По неравенству треугольника, <tex>\|f - \varphi\| < \varepsilon</tex>, следовательно, непрерывные функции образуют всюду плотное множество в <tex>L_p</tex>. | По неравенству треугольника, <tex>\|f - \varphi\| < \varepsilon</tex>, следовательно, непрерывные функции образуют всюду плотное множество в <tex>L_p</tex>. |
Версия 10:13, 10 января 2012
Будем рассматривать
. Пусть измеримо, .- измерима на , то есть пространство функций, суммируемых с -ой степенью на . Измеримость на принципиальна, так как в общем случае из измеримости не вытекает измеримость .
Пример, который подтверждает это:
- не измеримо и содержится в .
— не измерима на , так как ее множество Лебега - неизмеримо.
Но
на уже будет измеримой. Значит, из измеримости модуля не вытекает измеримость функции.
Теорема: |
— линейное пространство. |
Доказательство: |
Нам нужно доказать, что если , то .1) Докажем, что .Очевидно, .Пусть , , .Тогда
2) Если Таким образом, линейность доказана. , то и . |
Теорема: |
с нормой, определенной как — нормированное пространство. |
Доказательство: |
1) , так как корень -ой степени; — отождествление функции, совпадают почти всюду.2) — напрямую следует из линейности интеграла.3) :Вспомним — неравенство Минковского.Если мы получим аналогичное неравенство для интегралов, то полуаддитивность будет доказана. — неравенство Юнга. Подставим :
Интегрируем это неравенство по .Так как (аналогично, и ), равны 1, получаем:— неравенство Гёльдера для интегралов.
, дальше арифметически получаем неравенство Минковского. |
Значит,
— норма, — нормированное пространство, можно определить предел и т.д.У вдумчивого читателя уже давно должен был возникнуть вопрос — почему
? Тогда не будет работать неравенство Минковского, но нет гарантий, что в этом случае нельзя доказать требуемое как-нибудь еще. Ответ получат только те, кто доживет до третьего курса. Там мы покажем, что при — ТВП(топологическое векторное пространство), но локально выпуклым не является, поэтому там нельзя построить нетривиальный линейный функционал.При рассмотрении нормированных пространств одним из основных вопросов является вопрос их полноты — верно ли, что
?
Иначе говоря, следует ли в этом пространстве обычная сходимость (с пределом, принадлежащим пространству) из сходимости в себе?
Напоминаем, обратное всегда верно:
Так как
, то— получили сходимость в себе.
Прежде чем выяснить ответ на этот вопрос, посмотрим, что происходит с интегралом Римана:
Пусть
— мера Лебега на .— интеграл Римана.
Если взять
, то оно будет нормированным пространством, но не будет полным:Даже если TODO: А ДОКАЗАТЬ???
, может не найтись предела .Именно поэтому потребовалось распространение интеграла Римана на функции, суммируемые по Лебегу.
Теорема (о полноте): |
— полное. |
Доказательство: |
По условию теоремы, .— часть , поэтому . — фиксирована. Тогда .при . По лемме, которая перед теоремой Риса, утверждалось, что можно выделить , почти везде сходящуюся к . Установим с помощью теоремы Фату, что это — требуемая предельная функция в для ., следовательно, Фиксируем и будем вместо n подставлять .
По теореме Фату: Итак, при .Отсюда, .Но Примечание: на этапе выделения подпоследовательности и, по линейности, ). Тогда неравенство можно переписать: . Тогда по определению , полнота доказана. , стремящейся к почти всюду, может получиться, что — не интегрируема по Риману. |
Всюду плотность в
Теорема: |
Измеримые ограниченные функции образуют всюду плотное множество в |
Доказательство: |
По абсолютной непрерывности интеграла для любого | существует такое, что для из следует .
Теорема: |
Непрерывные функции образуют всюду плотное множество в |
Доказательство: |
Пусть По неравенству треугольника, , подберём ограниченную , такую, что . Пусть . По теореме Лузина существует такая непрерывная функция , что и . Тогда , то есть . , следовательно, непрерывные функции образуют всюду плотное множество в . |