Теоретический минимум по математической логике за 3 семестр — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
м (Новая страница: «==1. Исчисление высказываний, общие определения. Таблицы истинности. Общезначимость.== ==2. Д...»)
 
(1. Исчисление высказываний, общие определения. Таблицы истинности. Общезначимость.)
Строка 1: Строка 1:
 
==1. Исчисление высказываний, общие определения. Таблицы истинности. Общезначимость.==
 
==1. Исчисление высказываний, общие определения. Таблицы истинности. Общезначимость.==
 +
{{Определение
 +
|definition=
 +
Одним из базовых понятий логики высказываний является пропозициональная переменная — переменная, значением которой может быть логическое высказывание
 +
}}
 +
 +
{{Определение
 +
|definition=
 +
Языком исчисления высказываний мы назовем язык <tex>L</tex>, порождаемый следующей грамматикой со стартовым нетерминалом <nowiki><выражение></nowiki>:
 +
* <nowiki><выражение></nowiki> ::= <nowiki><импликация></nowiki>
 +
* <nowiki><импликация></nowiki> ::= <nowiki><дизъюнкция></nowiki> <tex>|</tex> <nowiki><дизъюнкция></nowiki> <tex>\rightarrow</tex> <nowiki><импликация></nowiki>
 +
* <nowiki><дизъюнкция></nowiki> ::= <nowiki><конъюнкция></nowiki> <tex>|</tex> <nowiki><дизъюнкция></nowiki> <tex>\vee</tex> <nowiki><конъюнкция></nowiki>
 +
* <nowiki><конъюнкция></nowiki> ::= <nowiki><терм></nowiki> <tex>|</tex> <nowiki><конъюнкция></nowiki> <tex>\&</tex> <nowiki><терм></nowiki>
 +
* <nowiki><терм></nowiki> ::= <nowiki><пропозициональная переменная></nowiki> <tex>|</tex> (<nowiki><выражение></nowiki>) <tex>|</tex> <tex>\neg</tex> <nowiki><терм></nowiki>
 +
}}
 +
 +
{{Определение
 +
|definition=
 +
Высказывание - любая формула, порожденная данными грамматиками.
 +
}}
 +
 +
{{TODO: таблицы истинности}}
 +
 +
{{Определение
 +
|definition=
 +
Назовем выражение общезначимым, если его оценка истинна при любой оценке входящих в него пропозициональных переменных. Запись: <tex>\models \alpha</tex>.
 +
}}
  
 
==2. Доказуемость. Аксиомы исчисления высказываний. Корректность исчисления высказываний.==
 
==2. Доказуемость. Аксиомы исчисления высказываний. Корректность исчисления высказываний.==

Версия 00:52, 14 января 2012

Содержание

1. Исчисление высказываний, общие определения. Таблицы истинности. Общезначимость.

Определение:
Одним из базовых понятий логики высказываний является пропозициональная переменная — переменная, значением которой может быть логическое высказывание


Определение:
Языком исчисления высказываний мы назовем язык [math]L[/math], порождаемый следующей грамматикой со стартовым нетерминалом <выражение>:
  • <выражение> ::= <импликация>
  • <импликация> ::= <дизъюнкция> [math]|[/math] <дизъюнкция> [math]\rightarrow[/math] <импликация>
  • <дизъюнкция> ::= <конъюнкция> [math]|[/math] <дизъюнкция> [math]\vee[/math] <конъюнкция>
  • <конъюнкция> ::= <терм> [math]|[/math] <конъюнкция> [math]\&[/math] <терм>
  • <терм> ::= <пропозициональная переменная> [math]|[/math] (<выражение>) [math]|[/math] [math]\neg[/math] <терм>


Определение:
Высказывание - любая формула, порожденная данными грамматиками.


Шаблон:TODO: таблицы истинности


Определение:
Назовем выражение общезначимым, если его оценка истинна при любой оценке входящих в него пропозициональных переменных. Запись: [math]\models \alpha[/math].


2. Доказуемость. Аксиомы исчисления высказываний. Корректность исчисления высказываний.

3. Вывод из допущений. Теорема о дедукции.

4. Теорема о полноте исчисления высказываний.

5. Исчисление предикатов. Общезначимость и выводимость.

6. Теорема о дедукции в исчислении предикатов. Корректность и полнота исчисления предикатов.

7. Натуральный вывод. Секвенциальное исчисление предикатов. Устранение сечений.

8. Интуиционизм. Интуиционистское исчисление высказываний. Модели Крипке.

9. Теории первого порядка, примеры. Структуры и модели.

10. Аксиоматика Пеано. Формальная арифметика.

11. Рекурсивные функции и отношения. Реализация операций сложения, умножения, ограниченного вычитания.

12. Выразимость отношений и преставимость функций в формальной арифметике. Представимость примитивов Z, N, U и S.

13. Бета-функция Геделя. Представимость рекурсивных функций в формальной арифметике.

14. Геделева нумерация. Выводимость и рекурсивные функции.

15. Непротиворечивость и омега-непротиворечивость. Первая теорема Геделя о неполноте арифметики.

16. Первая теорема Геделя в форме Россера. Вторая теорема Геделя о неполноте арифметики.

17. Теория множеств. Парадоксы. Аксиоматика Цермело-Френкеля (равенство множеств, конструктивные аксиомы)

18. Аксиоматика Цермело-Френкеля (аксиомы бесконечности, выбора, подстановки, фундирования).

19. Ординальные и кардинальные числа, мощность множества.