Теорема Лаутемана — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Доказательство)
Строка 8: Строка 8:
 
<tex>\mathrm{BPP}</tex> можно определить как множество таких языков <tex>L</tex>, что <tex>x \in L \Leftrightarrow \exists</tex> «много» вероятностных лент <tex>y: R(x,y)</tex>. <tex>\Sigma_2</tex> определяется как множество <tex>\{ L \mid x \in L \Leftrightarrow \exists y \forall z R(x, y, z)\}</tex>. Таким образом, необходимо уметь записывать «<tex>\exists</tex> много» с помощью кванторов <tex>\exists\forall</tex>.
 
<tex>\mathrm{BPP}</tex> можно определить как множество таких языков <tex>L</tex>, что <tex>x \in L \Leftrightarrow \exists</tex> «много» вероятностных лент <tex>y: R(x,y)</tex>. <tex>\Sigma_2</tex> определяется как множество <tex>\{ L \mid x \in L \Leftrightarrow \exists y \forall z R(x, y, z)\}</tex>. Таким образом, необходимо уметь записывать «<tex>\exists</tex> много» с помощью кванторов <tex>\exists\forall</tex>.
  
Рассмотрим язык <tex>G</tex> всех слов длины <tex>k</tex> над алфавитом <tex>\{0, 1\}</tex> для некоторого <tex>k</tex>, значение которого будет получено позже. Определим операцию <tex>\oplus</tex> над словами из этого языка как побитовое исключающее или.
+
Рассмотрим язык <tex>G = \{0, 1\}^t</tex> для некоторого <tex>t</tex>. Определим операцию <tex>\oplus</tex> над словами из этого языка как побитовое исключающее или.
  
Назовем <tex>X</tex>, содержащееся в <tex>G</tex>, большим, если существует набор <tex>g_1, g_2, \dots g_k</tex> такой, что <tex>\bigcup_{i=1}^{k} g_i \oplus X = G</tex>.
+
Назовем <tex>X</tex>, содержащееся в <tex>G</tex>, <tex>k</tex>-большим, если существует набор <tex>\{g_i\}_{i=1}^{k}</tex> такой, что <tex>\bigcup\limits_{i=1}^{k} g_i \oplus X = G</tex>.
  
Если <tex>k|X| < |G|</tex>, то <tex>X</tex> точно не является большим. Найдем достаточное условие, при котором <tex>X</tex> большой.
+
Если <tex>|X| < \frac{2^t}{k}</tex>, то <tex>X</tex> является <tex>k</tex>-маленьким. Найдем достаточное условие, при котором <tex>X</tex> является <tex>k</tex>-большим.
  
 
Воспользуемся утверждением, что если вероятность <tex>P(x \in A) > 0</tex>, то существует <tex>x</tex> из <tex>A</tex>. Для этого  
 
Воспользуемся утверждением, что если вероятность <tex>P(x \in A) > 0</tex>, то существует <tex>x</tex> из <tex>A</tex>. Для этого  
выберем случайно набор <tex>\{g_i\}</tex>.
+
выберем случайно набор <tex>\{g_i\}_{i=1}^{k}</tex>.
  
Для некотрого <tex>y \in G</tex>:
+
<tex>P(\bigcup\limits_{i=1}^{k} g_i \oplus X \not = G) = P(\exists y \not \in \bigcup\limits_{i=1}^{k} g_i \oplus X) = P(\bigvee\limits_{i=1}^{2^t} y_i \not \in \bigcup\limits_{j=1}^{k} g_j \oplus X) \leqslant 2^t P(y \not \in \bigcup\limits_{i=1}^{k} g_i \oplus X) = 2^t P(\bigwedge\limits_{i=1}^{k} y \oplus g_i \not \in X) = 2^t \left(P(y \not \in X)\right)^k = 2^t \left(1 - \frac{|X|}{2^t}\right)^k</tex>.
* <tex>P(y \in g_i \oplus X) = P(y \oplus g_i \in X) = \frac{|X|}{|G|}</tex>;
 
* <tex>P(y \not \in g_i \oplus X) = 1 - \frac{|X|}{|G|}</tex>;
 
* <tex>P(\bigwedge_{i=1}^{k} y \not \in g_i \oplus X) = \left(1 - \frac{|X|}{|G|}\right)^k</tex>;
 
* <tex>P(\exists y \in G \bigwedge_{i=1}^{k} y \not \in g_i \oplus X) = |G|\left(1 - \frac{|X|}{|G|}\right)^k</tex>.
 
  
Если <tex>|G|\left(1 - \frac{|X|}{|G|}\right)^k < 1</tex>, то существует набор <tex>\{g_i\}</tex>, что для любого <tex>y</tex> выполнено <tex>\bigvee_{i=1}^{k} y \in g_i \oplus X</tex>, а из этого следует, что <tex>X</tex> большой.  
+
Если <tex>2^t\left(1 - \frac{|X|}{2^t}\right)^k < 1</tex>, то существует набор <tex>\{g_i\}_{i=1}^{k}</tex>, такой что <tex>\bigcup\limits_{i=1}^{k} g_i \oplus X = G</tex>, то есть <tex>X</tex> <tex>k</tex>-большое.  
  
Рассмотрим язык <tex>L \in \mathrm{BPP}</tex>. Не уменьшая общности, можем считать, что программа <tex>M</tex>, распознающая этот язык, завершается за <tex>p(|x|)</tex> шагов и вероятность ошибки не превосходит
+
Рассмотрим язык <tex>L \in \mathrm{BPP}</tex>. Существует вероятностная машина Тьюринга <tex>M</tex>, такая что <tex>P(M(x) = [x \in L]) \geqslant 1 - \frac{1}{2^{p(n)}}</tex>, где <tex>p(n)</tex> некоторый полином, который будет определен позднее. Пусть <tex>M</tex> использует <tex>r(n)</tex> бит случайной ленты.
<tex>\frac{1}{3p(|x|)}</tex>, это следует из того, что если запускать программу несколько раз, то время работы растет линейно, а вероятность ошибки
 
экспоненциально уменьшается.
 
  
Зафиксируем <tex>x</tex>. Возьмем <tex>k = p(|x|)</tex>. Рассмотрим множество начал длины <tex>k</tex> вероятностных лент <tex>X</tex>, на которых
+
Зафиксируем <tex>x</tex>. Возьмем <tex>G = \{0, 1\}^{r(n)}</tex>. Рассмотрим множество <tex>A_x = \{r \in G \mid M(x,r) = 1\}</tex>. Подберем теперь <tex>p(n)</tex> и <tex>k</tex> так, чтобы <tex>x \in L \Leftrightarrow A_x</tex> <tex>k</tex>-большое.
машина <tex>M</tex> выдает единицу, то есть <tex>X = \{y \in G \mid M(x,y) = 1\}</tex>.
 
  
Из того, что вероятность ошибки не превосходит <tex>\frac1{3k}</tex>, следует:
+
Если <tex>x \in L</tex>, то <tex>P(A_x) = \frac{|A_x|}{2^{r(n)}} \geqslant 1 - \frac{1}{2^{p(n)}} \Rightarrow |A_x| \geqslant 2^{r(n)} \left( 1 - \frac{1}{2^{p(n)}} \right)</tex>. Потребуем <tex>2^{r(n)} \left( 1 - \frac{|A_x|}{2^{r(n)}} \right)^k \leqslant 2^{r(n) - kp(n)} < 1</tex>, чтобы <tex>A_x</tex> было бы <tex>k</tex>-большим.
* <tex>x \in L \rightarrow \frac{|X|}{|G|} \geqslant 1 - \frac1{3k}</tex>;
 
* <tex>x \not \in L \rightarrow \frac{|X|}{|G|} \leqslant \frac1{3k}</tex>.
 
  
Если <tex>x \in L</tex>, то:
+
Если <tex>x \not \in L</tex>, то <tex>P(A_x) = \frac{|A_x|}{2^{r(n)}} \leqslant \frac{1}{2^{p(n)}} \Rightarrow |A_x| \leqslant 2^{r(n) - p(n)}</tex>. Потребуем <tex>2^{r(n) - p(n)} < \frac{2^{r(n)}}{k}</tex>, чтобы <tex>A_x</tex> было бы <tex>k</tex>-маленьким.
* <tex>\frac{|X|}{|G|} \geqslant 1 - \frac1{3k}</tex>;
 
* <tex>1 - \frac{|X|}{|G|} \leqslant \frac1{3k}</tex>;
 
* <tex>|G|\left(1 - \frac{|X|}{|G|}\right)^k \leqslant |G| \left(\frac1{3k}\right)^k = \left(\frac2{3k}\right)^k < 1</tex>, что влечет за собой то, что <tex>X</tex> большой.
 
  
Если <tex>x \not \in L</tex>, то <tex>\frac{|X|}{|G|} \leqslant \frac1{3k} < \frac1k</tex>, а, следовательно, <tex>X</tex> не является большим.
+
Выберем <tex>p(n)</tex> так, чтобы <tex>\frac{r(n)}{p(n)} < 2^{p(n)} - 2</tex> и <tex>k = \lceil \frac{r(n)}{p(n)} \rceil + 1</tex>. Получаем <tex>\frac{r(n)}{p(n)} < k < 2^{p(n)}</tex>, то есть <tex>x \in L \Leftrightarrow A_x</tex> <tex>k</tex>-большое.
  
Таким образом, <tex>x \in L \Leftrightarrow \exists k, g_1, g_2, \dots, g_k \forall y \bigvee_{i=1}^{k} y \in g_i \oplus X</tex>, то есть <tex>x \in L \Leftrightarrow \exists k, g_1, g_2, \dots, g_k \forall y \bigvee_{i=1}^{k} y \oplus g_i \in X</tex>, то есть
+
Таким образом, <tex>x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} y \in g_i \oplus A_x</tex>, то есть <tex>x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} y \oplus g_i \in A_x</tex>, то есть
<tex>x \in L \Leftrightarrow \exists k, g_1, g_2, \dots, g_k \forall y \bigvee_{i=1}^{k} M(x, y \oplus g_i)</tex>,
+
<tex>x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} M(x, y \oplus g_i)</tex>,
 
а, значит, <tex>L \in \Sigma_2</tex>, <tex>\mathrm{BPP} \subset \Sigma_2</tex> и <tex>\mathrm{BPP} \subset \Sigma_2 \cap \Pi_2</tex>, что и требовалось доказать.
 
а, значит, <tex>L \in \Sigma_2</tex>, <tex>\mathrm{BPP} \subset \Sigma_2</tex> и <tex>\mathrm{BPP} \subset \Sigma_2 \cap \Pi_2</tex>, что и требовалось доказать.

Версия 22:10, 31 мая 2012

Формулировка

Утверждение теоремы Лаутемана (Sipser–Lautemann theorem или Sipser–Gács–Lautemann theorem) состоит в том, что класс BPP содержится в классах [math]\Sigma_2[/math] и [math]\Pi_2[/math] полиномиальной иерархии.

Доказательство

Из того, что класс [math]\mathrm{BPP}[/math] замкнут относительно дополнения и [math]\mathrm{co}\Sigma_2 = \Pi_2[/math], следует, что достаточно доказать включение [math]\mathrm{BPP} \subset \Sigma_2[/math].

[math]\mathrm{BPP}[/math] можно определить как множество таких языков [math]L[/math], что [math]x \in L \Leftrightarrow \exists[/math] «много» вероятностных лент [math]y: R(x,y)[/math]. [math]\Sigma_2[/math] определяется как множество [math]\{ L \mid x \in L \Leftrightarrow \exists y \forall z R(x, y, z)\}[/math]. Таким образом, необходимо уметь записывать «[math]\exists[/math] много» с помощью кванторов [math]\exists\forall[/math].

Рассмотрим язык [math]G = \{0, 1\}^t[/math] для некоторого [math]t[/math]. Определим операцию [math]\oplus[/math] над словами из этого языка как побитовое исключающее или.

Назовем [math]X[/math], содержащееся в [math]G[/math], [math]k[/math]-большим, если существует набор [math]\{g_i\}_{i=1}^{k}[/math] такой, что [math]\bigcup\limits_{i=1}^{k} g_i \oplus X = G[/math].

Если [math]|X| \lt \frac{2^t}{k}[/math], то [math]X[/math] является [math]k[/math]-маленьким. Найдем достаточное условие, при котором [math]X[/math] является [math]k[/math]-большим.

Воспользуемся утверждением, что если вероятность [math]P(x \in A) \gt 0[/math], то существует [math]x[/math] из [math]A[/math]. Для этого выберем случайно набор [math]\{g_i\}_{i=1}^{k}[/math].

[math]P(\bigcup\limits_{i=1}^{k} g_i \oplus X \not = G) = P(\exists y \not \in \bigcup\limits_{i=1}^{k} g_i \oplus X) = P(\bigvee\limits_{i=1}^{2^t} y_i \not \in \bigcup\limits_{j=1}^{k} g_j \oplus X) \leqslant 2^t P(y \not \in \bigcup\limits_{i=1}^{k} g_i \oplus X) = 2^t P(\bigwedge\limits_{i=1}^{k} y \oplus g_i \not \in X) = 2^t \left(P(y \not \in X)\right)^k = 2^t \left(1 - \frac{|X|}{2^t}\right)^k[/math].

Если [math]2^t\left(1 - \frac{|X|}{2^t}\right)^k \lt 1[/math], то существует набор [math]\{g_i\}_{i=1}^{k}[/math], такой что [math]\bigcup\limits_{i=1}^{k} g_i \oplus X = G[/math], то есть [math]X[/math] [math]k[/math]-большое.

Рассмотрим язык [math]L \in \mathrm{BPP}[/math]. Существует вероятностная машина Тьюринга [math]M[/math], такая что [math]P(M(x) = [x \in L]) \geqslant 1 - \frac{1}{2^{p(n)}}[/math], где [math]p(n)[/math] некоторый полином, который будет определен позднее. Пусть [math]M[/math] использует [math]r(n)[/math] бит случайной ленты.

Зафиксируем [math]x[/math]. Возьмем [math]G = \{0, 1\}^{r(n)}[/math]. Рассмотрим множество [math]A_x = \{r \in G \mid M(x,r) = 1\}[/math]. Подберем теперь [math]p(n)[/math] и [math]k[/math] так, чтобы [math]x \in L \Leftrightarrow A_x[/math] [math]k[/math]-большое.

Если [math]x \in L[/math], то [math]P(A_x) = \frac{|A_x|}{2^{r(n)}} \geqslant 1 - \frac{1}{2^{p(n)}} \Rightarrow |A_x| \geqslant 2^{r(n)} \left( 1 - \frac{1}{2^{p(n)}} \right)[/math]. Потребуем [math]2^{r(n)} \left( 1 - \frac{|A_x|}{2^{r(n)}} \right)^k \leqslant 2^{r(n) - kp(n)} \lt 1[/math], чтобы [math]A_x[/math] было бы [math]k[/math]-большим.

Если [math]x \not \in L[/math], то [math]P(A_x) = \frac{|A_x|}{2^{r(n)}} \leqslant \frac{1}{2^{p(n)}} \Rightarrow |A_x| \leqslant 2^{r(n) - p(n)}[/math]. Потребуем [math]2^{r(n) - p(n)} \lt \frac{2^{r(n)}}{k}[/math], чтобы [math]A_x[/math] было бы [math]k[/math]-маленьким.

Выберем [math]p(n)[/math] так, чтобы [math]\frac{r(n)}{p(n)} \lt 2^{p(n)} - 2[/math] и [math]k = \lceil \frac{r(n)}{p(n)} \rceil + 1[/math]. Получаем [math]\frac{r(n)}{p(n)} \lt k \lt 2^{p(n)}[/math], то есть [math]x \in L \Leftrightarrow A_x[/math] [math]k[/math]-большое.

Таким образом, [math]x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} y \in g_i \oplus A_x[/math], то есть [math]x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} y \oplus g_i \in A_x[/math], то есть [math]x \in L \Leftrightarrow \exists \{g_i\}_{i=1}^{k} \forall y \bigvee\limits_{i=1}^{k} M(x, y \oplus g_i)[/math], а, значит, [math]L \in \Sigma_2[/math], [math]\mathrm{BPP} \subset \Sigma_2[/math] и [math]\mathrm{BPP} \subset \Sigma_2 \cap \Pi_2[/math], что и требовалось доказать.