Вершинная, рёберная связность, связь между ними и минимальной степенью вершины — различия между версиями
Free0u (обсуждение | вклад) (→Нахождение вершинной связности) |
Free0u (обсуждение | вклад) (→Нахождение вершинной связности) |
||
| Строка 63: | Строка 63: | ||
== Нахождение вершинной связности == | == Нахождение вершинной связности == | ||
Нахождение вершинной связности сводится к задаче нахождения реберной связности следующим образом. | Нахождение вершинной связности сводится к задаче нахождения реберной связности следующим образом. | ||
| + | |||
| + | Разобьем каждую вершину <tex>v</tex> графа на две вершины <tex>v_1</tex> и <tex>v_2</tex>. Все ребра, которые входили в <tex>v</tex> будут входить в <tex>v_1</tex>. Все ребра, которые выходили из <tex>v</tex> будут выходить из <tex>v_2</tex>. Так же добавим ребро <tex>(v_1, v_2)</tex>. | ||
| + | |||
| + | [[Файл:Menger-vertex.JPG|300px|left|thumb|Иллюстрация]] | ||
| + | |||
| + | В новом графе запустим алгоритм нахождения реберной связности. | ||
== Литература == | == Литература == | ||
Версия 17:46, 22 декабря 2012
Содержание
Определения
| Определение: |
| Вершинной связностью графа называется наименьшее число вершин, удаление которых приводит к несвязному или тривиальному графу. |
| Определение: |
| Реберной связностью графа называется наименьшее количество ребер, удаление которых приводит к несвязному или тривиальному графу. |
Связь между вершинной, реберной связностью и минимальной степенью вершины
Пускай минимальная степень вершины графа обозначается буквой . Тогда:
| Теорема: |
Для любого графа справедливо следующее неравенство: |
| Доказательство: |
|
| Теорема: |
Для любых натуральных чисел , таких что , существует граф , у которого и |
| Доказательство: |
|
Рассмотрим граф , являющийся объединением двух полных графов и , содержащих вершину. Отметим вершин, принадлежащих подграфу и вершин, принадлежащих подграфу . Добавим в граф ребер так, чтобы каждое ребро было инцидентно помеченной вершине, лежащей в подграфе и помеченной вершине, лежащей в подграфе , причем не осталось ни одной помеченной вершины, у которой не появилось хотя бы одно новое ребро, инцидентное ей. Тогда:
|
Нахождение реберной связности
Описание
Для нахождения реберной связности воспользуемся следующей теоремой:
| Теорема (Теорема Менгера для -реберной связности): |
Пусть - конечный, неориентированный граф, для всех пар вершин существует реберно непересекающихся путей из в . |
Алгоритм следует непосредственно из теоремы. Нужно перебрать все пары вершин и , найти количество непересекающихся путей из в и выбрать минимум.
Для нахождения количества непересекающихся путей из в воспользуемся алгоритмом нахождения максимального потока. Сопоставим каждому ребру пропускную способность, равную и найдем максимальный поток. Он и будет равен количеству путей. Действительно, если провести декомпозицию потока, то получим набор реберно непересекающихся путей из в , по которым поток неотрицателен и равен 1 (т.к. пропускная способность всех ребер равна ). А значит, если поток равен , то и количество путей равно .
Псевдокод алгоритма
ans = INF for for flow = find_flow(s, t) ans = min(ans, flow)
Оценка работы
Время работы равно . При использовании алгоритма Эдмондса-Карпа время равно
Нахождение вершинной связности
Нахождение вершинной связности сводится к задаче нахождения реберной связности следующим образом.
Разобьем каждую вершину графа на две вершины и . Все ребра, которые входили в будут входить в . Все ребра, которые выходили из будут выходить из . Так же добавим ребро .
В новом графе запустим алгоритм нахождения реберной связности.
Литература
- Харари Ф. Теория графов: Пер. с англ. / Предисл. В. П. Козырева; Под ред. Г.П.Гаврилова. Изд. 4-е. — М.: Книжный дом "ЛИБРОКОМ", 2009. — 60 с.