Вершинная, рёберная связность, связь между ними и минимальной степенью вершины — различия между версиями
Free0u (обсуждение | вклад) (→Нахождение реберной связности. ver 2.0) |
Free0u (обсуждение | вклад) (→Нахождение вершинной связности. ver 2.0) |
||
| Строка 97: | Строка 97: | ||
== Нахождение вершинной связности. ver 2.0 == | == Нахождение вершинной связности. ver 2.0 == | ||
| − | + | Используя аналогичные утверждения и определения для вершинной связности придем к такому же алгоритму с тем отличием, что понадобится искать вершинно-непересекающиеся пути. | |
| + | Искать их можно тем же способом, если сопоставить каждой вершине пропускную способность, равную <tex>1</tex>. | ||
| + | Для этого воспользуемся известным трюком: | ||
Разобьем каждую вершину <tex>v</tex> графа на две вершины <tex>v_1</tex> и <tex>v_2</tex>. Все ребра, которые входили в <tex>v</tex> будут входить в <tex>v_1</tex>. Все ребра, которые выходили из <tex>v</tex> будут выходить из <tex>v_2</tex>. Так же добавим ребро <tex>(v_1, v_2)</tex>. | Разобьем каждую вершину <tex>v</tex> графа на две вершины <tex>v_1</tex> и <tex>v_2</tex>. Все ребра, которые входили в <tex>v</tex> будут входить в <tex>v_1</tex>. Все ребра, которые выходили из <tex>v</tex> будут выходить из <tex>v_2</tex>. Так же добавим ребро <tex>(v_1, v_2)</tex>. | ||
| Строка 103: | Строка 105: | ||
[[Файл:Vertex-2vertex.png|300px|left|thumb|Иллюстрация]] | [[Файл:Vertex-2vertex.png|300px|left|thumb|Иллюстрация]] | ||
<br clear="all"/> | <br clear="all"/> | ||
| − | + | ||
| + | После этого для нахождения количества вершинно непересекающихся путей в исходном графе будем искать количество реберно непересекающихся в новом графе. | ||
| + | |||
| + | Тем самым сведя задачу к нахождению реберной связности. | ||
== Литература == | == Литература == | ||
Версия 15:17, 29 декабря 2012
Содержание
Определения
| Определение: |
| Вершинной связностью графа называется наименьшее число вершин, удаление которых приводит к несвязному или тривиальному графу. |
| Определение: |
| Реберной связностью графа называется наименьшее количество ребер, удаление которых приводит к несвязному или тривиальному графу. |
Связь между вершинной, реберной связностью и минимальной степенью вершины
Пускай минимальная степень вершины графа обозначается буквой . Тогда:
| Теорема: |
Для любого графа справедливо следующее неравенство: |
| Доказательство: |
|
| Теорема: |
Для любых натуральных чисел , таких что , существует граф , у которого и |
| Доказательство: |
|
Рассмотрим граф , являющийся объединением двух полных графов и , содержащих вершину. Отметим вершин, принадлежащих подграфу и вершин, принадлежащих подграфу . Добавим в граф ребер так, чтобы каждое ребро было инцидентно помеченной вершине, лежащей в подграфе и помеченной вершине, лежащей в подграфе , причем не осталось ни одной помеченной вершины, у которой не появилось хотя бы одно новое ребро, инцидентное ей. Тогда:
|
Нахождение реберной связности
Для нахождения реберной связности воспользуемся следующей теоремой:
| Теорема (Теорема Менгера для -реберной связности): |
Пусть - конечный, неориентированный граф, для всех пар вершин существует реберно непересекающихся путей из в . |
Алгоритм следует непосредственно из теоремы. Нужно перебрать все пары вершин и , найти количество непересекающихся путей из в и выбрать минимум.
Для нахождения количества непересекающихся путей из в воспользуемся алгоритмом нахождения максимального потока. Сопоставим каждому ребру пропускную способность, равную и найдем максимальный поток. Он и будет равен количеству путей. Действительно, если провести декомпозицию потока, то получим набор реберно непересекающихся путей из в , по которым поток неотрицателен и равен (т.к. пропускная способность всех ребер равна ). А значит, если поток равен , то и количество путей равно .
Псевдокод алгоритма
ans = INF for for flow = find_flow(s, t) ans = min(ans, flow)
Оценка работы
Время работы равно . При использовании алгоритма Эдмондса-Карпа время равно или
Нахождение вершинной связности
Нахождение вершинной связности сводится к задаче нахождения реберной связности следующим образом.
Разобьем каждую вершину графа на две вершины и . Все ребра, которые входили в будут входить в . Все ребра, которые выходили из будут выходить из . Так же добавим ребро .
В новом графе запустим алгоритм нахождения реберной связности.
Нахождение реберной связности. ver 2.0
В статье про K-связность было сформулировано следующее утверждение:
| Утверждение: |
Граф является реберно - связным любая пара его вершин соединена по крайней мере - реберно непересекающимися путями. |
Там же было дано определение реберной связности через -связность:
| Определение: |
| Реберной связностью графа называется реберно - связен , для тривиального графа считаем . |
Для нахождения реберной связности нужно перебрать все пары вершин и , найти количество непересекающихся путей из в и выбрать минимум.
Пусть он равен . По утверждению, граф является - связным, причем такое - максимально (ведь мы явно нашли количество путей). А значит, по определению, реберная связность равна .
Для нахождения количества непересекающихся путей из в воспользуемся алгоритмом нахождения максимального потока. Сопоставим каждому ребру пропускную способность, равную и найдем максимальный поток. Он и будет равен количеству путей. Действительно, если провести декомпозицию потока, то получим набор реберно непересекающихся путей из в , по которым поток неотрицателен и равен (т.к. пропускная способность всех ребер равна ). А значит, если поток равен , то и количество путей равно .
Псевдокод алгоритма
ans = INF for for flow = find_flow(s, t) ans = min(ans, flow)
Оценка работы
Время работы равно . При использовании алгоритма Эдмондса-Карпа время равно или
Нахождение вершинной связности. ver 2.0
Используя аналогичные утверждения и определения для вершинной связности придем к такому же алгоритму с тем отличием, что понадобится искать вершинно-непересекающиеся пути. Искать их можно тем же способом, если сопоставить каждой вершине пропускную способность, равную . Для этого воспользуемся известным трюком:
Разобьем каждую вершину графа на две вершины и . Все ребра, которые входили в будут входить в . Все ребра, которые выходили из будут выходить из . Так же добавим ребро .
После этого для нахождения количества вершинно непересекающихся путей в исходном графе будем искать количество реберно непересекающихся в новом графе.
Тем самым сведя задачу к нахождению реберной связности.
Литература
- Харари Ф. Теория графов: Пер. с англ. / Предисл. В. П. Козырева; Под ред. Г.П.Гаврилова. Изд. 4-е. — М.: Книжный дом "ЛИБРОКОМ", 2009. — 60 с.