Метрические пространства — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Новая страница: «{{Определение |id=def1 |definition= Для некоторого множества <tex>X</tex>, отображение <tex> \rho : X \times X \righta...»)
(нет различий)

Версия 23:02, 29 декабря 2012

Определение:
Для некоторого множества [math]X[/math], отображение [math] \rho : X \times X \rightarrow \mathbb{R^+} [/math] — называется метрикой на [math]X[/math], если выполняются аксиомы
  1. [math] \rho (x, y) \ge 0 ;\ \rho (x, y) = 0 \iff x = y [/math]
  2. [math] \rho (x, y) = \rho (y, x) [/math]
  3. [math] \rho (x, y) \le \rho (x, z) + \rho (z, y) [/math] — неравенство треугольника
Пару [math](X, \rho)[/math] называют метрическим пространством.


Некоторые примеры метрических пространств:

  • В любом пространстве [math]X[/math] можно ввести дискретную метрику: [math]\rho(x, y) = \begin{cases} 0; & x = y \\ 1; & x \ne y \end{cases}[/math]
  • [math]X = \mathbb{R}, \rho(x, y) = | x - y |[/math]
  • [math]X = \mathbb{R}^n, \rho(\overline x, \overline y) = \sqrt{\sum\limits_{i=1}^n (x_i - y_i)^2}[/math]
  • [math]X = \mathbb{R}^{\infty}[/math]. Превращение в МП должно быть связано с желаемой операцией предельного перехода. В случае конечномерного пространства сходимость совпадает с покоординатной сходимостью, хотим того же самого для бесконечномерного. [math] x = \lim\limits_{n \to \infty} x_n \overset{\mathrm{def}}{\Leftrightarrow} \rho(x_n, x) \to 0[/math]. TODO: к чему это? Введем метрику: [math]\rho(\overline x, \overline y) = \sum\limits_{n = 1}^{\infty} {1 \over 2^n}{|x_n - y_n| \over 1 + |x_n - y_n|}[/math]. Проверим, что эта метрика удовлетворяет аксиомам:
    • этот ряд всегда сходящийся, так как мажорируется убывающей геометрической прогрессией [math]\sum\limits_{n=1}^{\infty} {1 \over 2^n} = 1[/math], соответственно, расстояние ограничено единицей.
    • первая аксиома: неотрицательность очевидна, равенство метрики в обратную сторону очевидно, в прямую хз TODO
    • вторая аксиома: еще очевиднее
    • третья аксиома: рассмотрим [math]f(t) = {t \over 1 + t}[/math]. Так как [math]f[/math] выпукла вверх, [math]f(t_1 + t_2) \le f(t_1) + f(t_2)[/math], то есть все три аксиомы выполняются. TODO: ШТО? Почему?(
    Сходимость в этой метрике эквивалентна покоординатной (TODO: почему?).