Метрические пространства — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 130: Строка 130:
  
 
$A$ '''всюду плотно''' в $(X, \rho)$, если $\mathrm{Cl} A = X$
 
$A$ '''всюду плотно''' в $(X, \rho)$, если $\mathrm{Cl} A = X$
: Например, $\mathbb{Q}$ всюду плотно в $\mathbb{R}$, так как $\mathrm{Cl} \mathbb{Q} = \mathbb{R}$ (TODO:ох, что бы это значило)
+
: Например, $\mathbb{Q}$ всюду плотно в $\mathbb{R}$, так как $\mathrm{Cl} \mathbb{Q} = \mathbb{R}$ (TODO:ох, что бы это значило. Видимо, что множество действительных чисел строится включением пределов последовательностей рациональных.)
  
 
Если всюду плотное множество счетно, то пространство называют '''сепарабельным'''.
 
Если всюду плотное множество счетно, то пространство называют '''сепарабельным'''.

Версия 18:01, 30 декабря 2012

Эта статья находится в разработке!


Определение:
Для некоторого множества [math]X[/math], отображение [math] \rho : X \times X \rightarrow \mathbb{R^+} [/math] — называется метрикой на [math]X[/math], если выполняются аксиомы
  1. [math] \rho (x, y) \ge 0 ;\ \rho (x, y) = 0 \iff x = y [/math]
  2. [math] \rho (x, y) = \rho (y, x) [/math]
  3. [math] \rho (x, y) \le \rho (x, z) + \rho (z, y) [/math] — неравенство треугольника
Пару [math](X, \rho)[/math] называют метрическим пространством.


Определение:
Последовательность [math]x_n[/math] сходится к [math]x[/math] в МП [math](X, \rho)[/math] (записывают [math] x = \lim\limits_{n \to \infty} x_n[/math]), если [math] \rho(x_n, x) \xrightarrow[n \to \infty]{} 0[/math]


Некоторые примеры метрических пространств:

  • [math]X = \mathbb{R}, \rho(x, y) = | x - y |[/math]111
  • [math]X = \mathbb{R}^n, \rho(\overline x, \overline y) = \sqrt{\sum\limits_{i=1}^n (x_i - y_i)^2}[/math]
  • [math]X = \mathbb{R}^{\infty}[/math]. Превращение в МП должно быть связано с желаемой операцией предельного перехода. В случае конечномерного пространства сходимость совпадает с покоординатной сходимостью, хотим того же самого для бесконечномерного. Введем метрику: [math]\rho(\overline x, \overline y) = \sum\limits_{n = 1}^{\infty} {1 \over 2^n}{|x_n - y_n| \over 1 + |x_n - y_n|}[/math]. Проверим, что эта метрика удовлетворяет аксиомам:
    • этот ряд всегда сходящийся, так как мажорируется убывающей геометрической прогрессией [math]\sum\limits_{n=1}^{\infty} {1 \over 2^n} = 1[/math], соответственно, расстояние ограничено единицей.
    • первая аксиома: неотрицательность очевидна, равенство метрики нулю в обе стороны очевидно
    • вторая аксиома: еще очевиднее
    • третья аксиома: рассмотрим [math]f(t) = {t \over 1 + t}[/math]. Так как [math]f[/math] выпукла вверх, [math]f(t_1 + t_2) \le f(t_1) + f(t_2)[/math], то есть все три аксиомы выполняются. TODO: ШТО? Почему?( Откуда это неравенство и как из этого следует выполнение аксиомы?
    Сходимость в этой метрике эквивалентна покоординатной (TODO: почему?).
  • В любом пространстве [math]X[/math] можно ввести дискретную метрику: [math]\rho(x, y) = \begin{cases} 0; & x = y \\ 1; & x \ne y \end{cases}[/math]. Заметим, что в дискретной метрике сходятся только стационарные последовательности.
  • [math]X = \mathbb{R}^{\mathbb{I}}[/math], то есть множество всех функций из [math][0; 1][/math] в [math]\mathbb{R}[/math]. Это пространство не метризуется, то есть не существует метрики, в которой сходимость эквивалентна поточечной (TODO: почему??)

Центральную роль в изучении МП играют шары:

Определение:
Открытым шаром в МП [math](X, \rho)[/math] с радиусом [math]r[/math] и центром в [math]a[/math] называют множество [math]V_r(a) = \{ x \mid \rho(x, a) \lt r \} [/math]. В определении замкнутого шара знак [math]\lt [/math] заменяется на [math]\le[/math].


На базе этих множеств можно МП превратить в ТП.


Определение:
Для некоторого множества [math]X[/math], класс множеств [math]\tau[/math] называется топологией, если:
  1. [math] X, \emptyset \in \tau[/math]
  2. Любое объединение (возможно, несчетное) [math]\bigcup\limits_{\alpha} G_{\alpha}[/math] из [math]\tau[/math] принадлежит [math]\tau[/math]
  3. Любое конечное пересечение [math]\bigcap\limits_{i=1}^{n} G_i[/math] из [math]\tau[/math] принадлежит [math]\tau[/math]
Пару [math](X, \tau)[/math] называют топологическим пространством. Множества, принадлежащие [math]\tau[/math] называются открытыми. (по Хаусдорфу ???). Замкнутыми называются множества-дополнения к множествам из [math]\tau[/math].


Определение:
Рассмотрим множество [math]A \subset X[/math].

Внутренностью (interior) множества [math]A[/math] называется множество [math]\mathrm{Int} A = \bigcup\limits_{G \subset A} G[/math], где [math] G [/math] — открытые множества.

Замыкание (closure) множества [math]A[/math] называется множество [math]\mathrm{Cl} A = \bigcap\limits_{A \subset F } F[/math], где [math] F [/math] — замкнутые множества.

Границей (boundary, frontier) множества [math]A[/math] называется множество [math]\mathrm{Fr} A = \mathrm{Cl} A \setminus \mathrm{Int} A[/math].


ВНИМАНИЕ, ВИКИТЕХ <wikitex>

Определение:
Точка $x$ называется пределом последовательности $x_n$ в топологическом пространстве' $(X, \tau)$, если $\forall G \ni x \exists N \forall n > N: x_n \in G$, то есть любое открытое множество, содержащее предел, также содержит все точки последовательности кроме конечного числа.


Определение:
Множество $U$ называет окрестностью в ТП, если существует открытое $G$: $x \in G \subset U$.


Определение:
Отображение $f: (X, \tau_1) \to (Y, \tau_2)$ называют непрерывным в точке $x \in X$, если для любой окрестности $U_{f(x)}$ существует окрестность $U_x$: $f(U_x) \subset U_{f(x)}$.


Характеристика непрерывных отображений ТП: $f$ непрерывно тогда и только тогда, когда для любого $G' \in \tau_2: f^{-1}(G') \in \tau_1$, то есть прообраз любого открытого множества также открыт. (TODO: в конспекте только в прямую сторону, но вообще вроде это критерий. Док-во есть в Колмогорове, элементы теории функции и функана, 6 издание, страница 107)

Рассмотрим МП $(X, \rho)$, выделим в семейство открытых множеств множества, являющимися объединениями любого (TODO счетного/несчетного??) числа открытых шаров. Покажем, что это удовлетворяет аксиомам ТП:

  1. Очевидно (видимо, $X = \bigcup\limits_{i=1}^{\infty}U_i(x)$, где $x$ — любая точка $X$ если оно непустое, а если пустое, то просто не будем брать ни одного множества)
  2. Очевидно (TODO: а по-моему, не очень очевидно, как показать, что несчетное объединение несчетных/счетных объединений шаров — просто несчетное объединение шаров?)
  3. Докажем для пересечения двух, дальше по индукции:
    $G_1 \bigcap G_2 = (\bigcup V') \bigcap (\bigcup V) = \bigcup (V' \bigcap V)$. (TODO: интересно, почему можно так сделать)
    Рассмотрим $V' \bigcap V$: $\forall x \in V' \bigcap V \exists V(x) \subset V' \bigcap V$ (раньше когда-то доказывали), тогда $V' \bigcap V = \bigcup\limits_{x \in V' \cap V} V(x)$ (TODO: опять же, интересно, почему счетное/несчетное объединение несчетного числа шаров — счетное/несчетное объединение шаров)

В данном случае открытые множества были получены объединением открытых шаров — множеств более узкого класса. Это один из общих приемов превращения произвольного пространства в топологическое, открытые шары здесь — база топологии.


Определение:
Базой топологии называют... TODO пщщ в конспекте какая-то хрень


Утверждение:
$\mathrm{Cl} A = \{ x \mid \rho(x, A) = 0 \}$, где $\rho(x, A) = \inf\limits_{a \in A} \rho(x, y)$.

TODO: какое-то странное вспомогательное утверждение про непрерывность

TODO: ааа, ниче не понятно. Кажется, доказательство через включение в обе стороны.

Замечание: заметим, что в общем случае в топологических пространствах замыкания не определяются через предел последовательности, в этом смысле метрические пространства удобны.

Метрические пространства удовлетворяют свойству нормальности:

Утверждение (нормальность МП):
Любое МП - нормальное, то есть любые два непересекающихся замкнутых подмножества имеют непересекающиеся окрестности.
[math]\triangleright[/math]

(скопировано из первого курса, в Колмогорове на странице 112 есть доказательство поприятнее и поинтуитивнее)

$ f(x) = \frac {\rho(x, F_1)} {\rho(x, F_1) + \rho(x, F_2)} $. Т.к. $ F_1 \cap F_2 = \varnothing $ и $ F_1, F_2 $ - замкнуты, то знаменатель не равен 0. Следовательно, $ f(x) $ корректна и непрерывна в силу непрерывности $ \rho $. При этом: $ x \in F_1 \Rightarrow f(x) = 0; x \in F_2: f(x) = 1 $. Рассмотрим на R пару интервалов: $ (- \infty; \frac 1 3) $ и $ (\frac 1 2, + \infty) $. Т.к. $ f(x) $ неперывна, то прообраз открытого множества - открытое множество (это другое определение непрерывного отображения, оно почти эквивалентно тому, которое было дано ранее).

$ G_1 = f^{-1} ( - \infty; \frac 1 3); G_2 = f^{-1}(\frac 1 2, + \infty) $
$ F_1 \in G_1; F_2 \in G_2; G_1 \cap G_2 = \varnothing $, ч.т.д.
[math]\triangleleft[/math]

Следствие: так как одноточечные подмножества в МП являются замкнутыми, МП удовлетворяют аксиоме отделимости Хаусдорфа: любые две различные точки можно отделить открытыми шарами. (TODO: вообще в аксиоме говорится про окрестности, а не шары, важно ли это?)

Классификация Бэра:

$A$ всюду плотно в $(X, \rho)$, если $\mathrm{Cl} A = X$

Например, $\mathbb{Q}$ всюду плотно в $\mathbb{R}$, так как $\mathrm{Cl} \mathbb{Q} = \mathbb{R}$ (TODO:ох, что бы это значило. Видимо, что множество действительных чисел строится включением пределов последовательностей рациональных.)

Если всюду плотное множество счетно, то пространство называют сепарабельным.

$A$ нигде не плотно в $(X, \rho)$, если $\mathrm{Int} \mathrm{Cl} A = \emptyset$. В смысле метрических пространств это значит, что в любом шаре есть шар, не содержащий точек $A$.

Например, $\mathbb{Z}$ нигде не плотно в $\mathbb{R}$.

$A$ имеет I категорию по Бэру если оно является не более чем счетным объединением нигде не плотных множеств. В противном случае оно имеет II категорию по Бэру.


Определение:
МП $(X, \rho)$ называется полным, если в нем любая сходящаяся в себе последовательность сходится.


Утверждение (принцип вложенных шаров):
Пусть $(X, \rho)$ — полное. $\overline V_n$ — замкнутые шары. $\overline V_{n + 1} \subset \overline V_n$, $r_n \to 0$. Тогда $\bigcap\limits_{n=1}^{\infty} \overline V_n \ne \emptyset$, и является точкой.
[math]\triangleright[/math]

Пусть $a_n$ — центр соответствующего шара, тогда из вложенности $\forall m > n: \rho(a_n, a_m) < r_n$, то есть последовательность центров сходится в себе, так как $r_n \to 0$. Тогда по полноте последовательность центров сходится к $a$, множество $\{a\}$ и есть искомое перечечение.

TODO: интересно, а почему важна замкнутость?
[math]\triangleleft[/math]


</wikitex>