Изменения

Перейти к: навигация, поиск

Метрические пространства

13 байт добавлено, 10:23, 14 января 2013
м
Нет описания правки
* В любом пространстве <tex>X</tex> можно ввести дискретную метрику: <tex>\rho(x, y) = \begin{cases} 0; & x = y \\ 1; & x \ne y \end{cases}</tex>. Заметим, что в дискретной метрике сходятся только стационарные последовательности.
* <tex>X = \mathbb{R}^{\mathbb{I}}</tex>, то есть множество всех функций из <tex>\mathbb{I} = [0; 1]</tex> в <tex>\mathbb{R}</tex>. Это пространство не метризуется, то есть не существует метрики, в которой сходимость эквивалентна поточечной <ref>Кому интересно: метрическое пространство удовлетворяет первой аксиоме счетности, а она не может выполняться в <tex>X = \mathbb{I}^{\mathbb{I}}</tex>, которое понятно как сводится к <tex>X = \mathbb{R}^{\mathbb{I}}</tex>: [http://math.stackexchange.com/questions/65472/why-is-0-10-1-not-first-countable ''Why is <tex>[0,1]^{[0,1]}</tex> not first countable?'']</ref>.
Центральную роль в изучении МП играют шары:
1302
правки

Навигация