Доказательство нерегулярности языков: лемма о разрастании — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 1: Строка 1:
 +
[[Категория: Теория формальных языков]]
 
{{Лемма
 
{{Лемма
 
|about=О разрастании
 
|about=О разрастании

Версия 04:47, 5 октября 2010

Лемма (О разрастании):
[math]L[/math] - регулярный [math]\Rightarrow[/math] [math]\exists n \:\forall \omega : |\omega| \geqslant n, \omega \in L \: \exists x,y,z : \omega=xyz, y\neq \epsilon, |xy|\leqslant n, \forall k \geqslant 0\: xy^{k}z\in L[/math]
Доказательство:
[math]\triangleright[/math]
L - регулярный [math]\Rightarrow[/math] [math]\exists[/math] автомат [math]A : \: n=|Q|[/math] допускающий этот язык. Возьмём [math]\omega\in L : |\omega|\geqslant n[/math] тогда рассмотрим переходы в автомате [math]\langle s,\omega\rangle \vdash\langle u_1, \omega[0]^{-1}\omega\dots\vdash\langle u_{l},\epsilon\rangle, \: l\geqslant n[/math]. Так как [math]l\geqslant n[/math], то возьмём первое совпадение состояний в автомате [math]u_i, u_j[/math]. В нашем автомате для [math]\omega : \: \langle s, xyz\rangle \vdash^*\langle u_i, yz\rangle\vdash^*\langle u_j, z\rangle\vdash^*\langle u_l, \epsilon\rangle[/math]. Тогда [math]xy^kz[/math] подходит.
[math]\triangleleft[/math]


Чаще используется отрицание леммы для доказательства нерегулярности языка.


Пример 1. Правильная скобочная последовательность. Для [math]\forall n[/math] мы берём [math]\omega=(^n)^n[/math]. Так как [math]|xy|\leqslant n[/math], то [math]y=(^b[/math]. Берём [math]k=2[/math] и получаем [math]xy^kz=(^{n+b})^n[/math], что не является правильной скобочной последовательностью. Значит правильная скобочная последовательность не регулярный язык.

Пример 2. Язык [math]0^a1^a[/math] Для [math]\forall n[/math] мы берём [math]\omega=0^n1^n[/math]. Так как [math]|xy|\leqslant n[/math], то [math]y=0^b[/math]. Берём [math]k=2[/math] и получаем [math]xy^kz=0^{n+b}1^n[/math], что не является элементом нашего языка, значит наш язык не регулярен.