Альтернатива Фредгольма — Шаудера — различия между версиями
Rybak (обсуждение | вклад) м (X) |
Rybak (обсуждение | вклад) |
||
Строка 15: | Строка 15: | ||
Ставим задачу: <tex>y</tex> дано, когда <tex>Tx=y</tex> разрешимо относительно <tex>x</tex>? | Ставим задачу: <tex>y</tex> дано, когда <tex>Tx=y</tex> разрешимо относительно <tex>x</tex>? | ||
− | <tex>y = \lambda x - A x</tex> — операторные уравнения второго рода (явно выделен <tex>I</tex>). Уравнения первого рода (<tex>y=Bx</tex>) решаются гораздо сложней. Объясняется это достаточно просто: <tex>y = \lambda x - A x = \lambda (x - \frac 1 \lambda A)x</tex>. Если <tex>\frac 1 {|\lambda|} {\|A\|} < 1 </tex>, то, по теореме Банаха, <tex>I - \frac 1 \lambda A</tex> непрерывно обратим, следовательно, при достаточно больших <tex>\lambda</tex>, <tex>y=\lambda x - A x</tex> разрешимо при любой левой части, причём решения <tex>x</tex> будут непрерывно зависеть от <tex>y</tex>. Интересна ситуация при <tex>|\lambda| | + | <tex>y = \lambda x - A x</tex> — операторные уравнения второго рода (явно выделен <tex>I</tex>). Уравнения первого рода (<tex>y=Bx</tex>) решаются гораздо сложней. Объясняется это достаточно просто: <tex>y = \lambda x - A x = \lambda (x - \frac 1 \lambda A)x</tex>. Если <tex>\frac 1 {|\lambda|} {\|A\|} < 1 </tex>, то, по теореме Банаха, <tex>I - \frac 1 \lambda A</tex> непрерывно обратим, следовательно, при достаточно больших <tex>\lambda</tex>, <tex>y=\lambda x - A x</tex> разрешимо при любой левой части, причём решения <tex>x</tex> будут непрерывно зависеть от <tex>y</tex>. Интересна ситуация при <tex>|\lambda| \leq \|A\|</tex>. В случае компактного A ответ даёт теория Шаудера. |
+ | |||
+ | Будем считать <tex> \lambda = 1 </tex> | ||
{{Утверждение | {{Утверждение | ||
Строка 29: | Строка 31: | ||
Допустим, что <tex>\dim \operatorname{Ker}T = + \infty,~\overline W = \overline V \cap Y \Rightarrow \overline W = A \overline W</tex>. Так как <tex>A</tex> — компактный, <tex>\overline W</tex> — компакт в <tex>Y</tex>, но в бесконечномерном пространстве шар (<tex>\overline W</tex> будет шаром в подпространстве <tex>Y</tex>) не может быть компактом, получаем противоречие. Значит, если <tex>A</tex> — компактный, то <tex>\dim\operatorname{Ker}(I-A) < + \infty</tex>. | Допустим, что <tex>\dim \operatorname{Ker}T = + \infty,~\overline W = \overline V \cap Y \Rightarrow \overline W = A \overline W</tex>. Так как <tex>A</tex> — компактный, <tex>\overline W</tex> — компакт в <tex>Y</tex>, но в бесконечномерном пространстве шар (<tex>\overline W</tex> будет шаром в подпространстве <tex>Y</tex>) не может быть компактом, получаем противоречие. Значит, если <tex>A</tex> — компактный, то <tex>\dim\operatorname{Ker}(I-A) < + \infty</tex>. | ||
}} | }} | ||
+ | |||
{{Теорема | {{Теорема | ||
|statement= | |statement= |
Версия 15:31, 11 июня 2013
Пусть
, непрерывна на ..
, — компактный оператор.
Будем изучать так называемые интегральные уравнения Фредгольма:
в .Фредгольмом в начале XX века была разработана теория решения таких уравнений без использования методов функционального анализа. В 30-е годы XX века Шаудер обобщил ее на абстрактные компактные операторы.
Пусть
— -пространство, , A — компактный.Ставим задачу:
дано, когда разрешимо относительно ?— операторные уравнения второго рода (явно выделен ). Уравнения первого рода ( ) решаются гораздо сложней. Объясняется это достаточно просто: . Если , то, по теореме Банаха, непрерывно обратим, следовательно, при достаточно больших , разрешимо при любой левой части, причём решения будут непрерывно зависеть от . Интересна ситуация при . В случае компактного A ответ даёт теория Шаудера.
Будем считать
Утверждение: |
— компактный оператор. Тогда |
, таким образом, ядро — неподвижные точки . Пусть Допустим, что — единичный шар, — подпространство . . Так как — компактный, — компакт в , но в бесконечномерном пространстве шар ( будет шаром в подпространстве ) не может быть компактом, получаем противоречие. Значит, если — компактный, то . |
Теорема: |
Пусть , компактен, тогда замкнуто. |
Доказательство: |
Ранее мы доказали, что если уравнение допускает априорную оценку ( ), то замкнуто. Нужно доказать, что у есть априорная оценка. Пусть . Тогда . Значит, все решения уравнения записываются в форме , где — одно из решений, принадлежит . Но .Рассмотрим функцию от переменных . Эта функция — не что иное, как наилучшее приближение элементами конечномерного , теорема о наилучшем приближении гарантирует нам, что существуют ., среди всех решений уравнения существует решение с минимальной нормой. Его назовём , и далее докажем, что эти решения допускают априорную оценку через . Допустим, априорной оценки не существует, тогда можно построить последовательность и (минимальных по норме решений с правой частью ), таких, что .В силу линейности уравнения, можно выбрать с единичной нормой, тогда ., так как ограничено и компактен, то из можно выделить сходящуюся подпоследовательность . Тогда получаем .Но , значит, .То есть, .Получили, что , но, так как мы выбирали минимальное по норме , то — противоречие, значит, априорная оценка существует, замкнуто, и теорема доказана. |
Докажем теперь два утверждения.
Утверждение: |
Пусть , — компактный оператор.
Тогда . |
Идея доказательства подобных утверждений следующая: идем от противного и, пользуясь леммой Рисса, строим ограниченную последовательность точек. Применяя к ней , получаем последовательность, из которой можно выделить сходящуюся подпоследовательность. После этого ищем противоречие с условием.
Второе слагаемое является компактным оператором, обозначим его за , ., тогда . Пусть , и , тогда , то есть, .Допустим, что (строго). — подпространство .Применим к паре подпространств лемму Рисса:
Таким образом выстраиваем последовательность ., из можно выделить сходящуюся подпоследовательность. . Обозначим сумму в скобках за .Заметим, что .. Здесь первое слагаемое равно нулю по определению последовательности Но раз . Второе же, так как операторы и коммутируют, равно , и . , то , и , чего не может быть, поскольку в этом случае мы не сможем выделить из сходящуюся подпоследовательность. Поэтому наше предположение неверно, теорема доказана. |
Утверждение: |
Пусть — компактный оператор на банаховом , .
Тогда . |
: Пусть существует .Так как , то у уравнения существует решение, обозначим его ., то есть, . Заметим, что , в противном случае , что противоречит нашему предположению.Значит, (строго). Действуя аналогично, берем решение уравнения — , .Получаем бесконечную цепочку строго вложенных множеств , существование которой противоречит предыдущему утверждению, значит, .: Пусть .Тогда — замкнутое множество, , . , и . |
Альтернатива Фредгольма-Шаудера
Теорема (альтернатива Фредгольма-Шаудера): |
Пусть — компактный оператор и . Тогда возможно только две ситуации:
|
Доказательство: |
|
Теорема о счетности спектра компактного оператора
Рассмотрим
.- , тогда оператор необратим, и — собственное число, то есть .
- , тогда по альтернативе, оператор непрерывно обратим, то есть .
Таким образом, спектр состоит из собственных чисел, и, возможно, нуля. Теперь изучим мощность спектра:
Теорема: |
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0. |
Доказательство: |
Так как спектр линейного ограниченного оператора входит в круг радиуса , получаем . Рассмотрим , проверим, что на отрезке — конечное число точек спектра. Предположим обратное, тогда выделим подпоследовательность различных собственных значений (каждое из них больше ). Пусть им соответствуют собственные векторы .Покажем, что при любом , собственные векторы — линейно независимы, и что линейные оболочки и строго вложены друг в друга. Доказательство по индукции: для — тривиально. Пусть — ЛНЗ, покажем, что — тоже ЛНЗ. Покажем от противного: пусть . Подействуем на обе части оператором : . Разделив обе части на (он ненулевой), получим другое разложение по векторам : . Но так как разложение по линейно независимой системе должно быть единственно, то получаем, что , здесь либо нулевое, либо . Так как собственный вектор ненулевой, найдется такое , что , и тогда , то есть получили два одинаковых собственных значения, противоречие, а значит, — ЛНЗ и включение — строгое.Применим к цепи подпространств лемму Рисса о почти перпендикуляре: . Проделав такое для каждого , получим последовательность , заметим, что она ограничена 1. Определим . В силу компактности из можно выбрать сходящуюся последовательность точек. Проверим, что это сделать нельзя, противоречие будет связано с допущением о том, что на бесконечное количество точек.Составим разность . Проверим, что то, что находится в скобке, принадлежит .. . , . Подействуем A: . Разность . и, следовательно, принадлежит . Таким образом, Осталось проверить, что только . Получаем: , где первый множитель не меньше , а второй — (по построению ) , в итоге и, значит, из не выделить сходящейся подпоследовательности. Получили противоречие, а значит, на каждом отрезке действительно конечное число собственных чисел, и спектр счетен. может быть предельной точкой. Пусть это не так, и какое-то — предельная точка, это означает, что для любого , во множестве содержится собственное число, то есть в отрезке содержится счетно-бесконечное число точек спектра, чего быть не может, как мы уже показали выше. |