Альтернатива Фредгольма — Шаудера — различия между версиями
Строка 171: | Строка 171: | ||
<tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n \in L_{n+p-1}</tex>. <tex>L_{n+p-1} = \mathcal{L} \{x_1,\ldots,x_{n+p-1}\}</tex>. <tex>y_{n+p} \in L_{n+p}</tex>, <tex>y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k x_k + \alpha_{n+p} x_{n+p}</tex>. Подействуем A: <tex>A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k A x_k + \alpha_{n+p} A x_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k \lambda_k x_k + \alpha_{n+p} \lambda_{n+p} x_{n+p} </tex>. Разность <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \beta_k x_k \in L_{n+p-1}</tex>. <tex>y_n = \sum\limits_{k=1}^n \gamma_k x_k, A y_n = \sum\limits_{k=1}^n \gamma_k \lambda_k x_k \in L_{n+p-1}</tex> и, следовательно, <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n</tex> принадлежит <tex>L_{n+p-1}</tex>. | <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n \in L_{n+p-1}</tex>. <tex>L_{n+p-1} = \mathcal{L} \{x_1,\ldots,x_{n+p-1}\}</tex>. <tex>y_{n+p} \in L_{n+p}</tex>, <tex>y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k x_k + \alpha_{n+p} x_{n+p}</tex>. Подействуем A: <tex>A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k A x_k + \alpha_{n+p} A x_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k \lambda_k x_k + \alpha_{n+p} \lambda_{n+p} x_{n+p} </tex>. Разность <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \beta_k x_k \in L_{n+p-1}</tex>. <tex>y_n = \sum\limits_{k=1}^n \gamma_k x_k, A y_n = \sum\limits_{k=1}^n \gamma_k \lambda_k x_k \in L_{n+p-1}</tex> и, следовательно, <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n</tex> принадлежит <tex>L_{n+p-1}</tex>. | ||
− | + | ||
+ | То что было в скобке обозначим за <tex>t</tex>. | ||
+ | Тогда <tex>z_{n+p}-z_n = A y_{n+p} - A y_n = \lambda_{n+p} y_{n+p} - t =\lambda_{n+p}(y_{n+p} - \frac{t}{\lambda_{n+p}})</tex> | ||
+ | Получаем: <tex>\|z_{n+p} - z_n\| = |\lambda_{n+p}| \|y_{n+p} - \frac{t}{\lambda_{n+p}}|</tex>, где первый множитель не меньше <tex>\alpha</tex>, а второй — <tex>\frac 1 2</tex> (по построению <tex>y_n</tex>) , в итоге <tex>\|z_{n+p} - z_n\| \geq \frac{\alpha}{2}</tex> и, значит, из <tex>\{z_n\}</tex> не выделить сходящейся подпоследовательности. Получили противоречие, а значит, на каждом отрезке <tex>[\alpha, \|A\|]</tex> действительно конечное число собственных чисел, и спектр счетен. | ||
Осталось проверить, что только <tex>0</tex> может быть предельной точкой. Пусть это не так, и какое-то <tex>\lambda \ne 0</tex> — предельная точка, это означает, что для любого <tex>\forall \varepsilon: 0 < \varepsilon < \frac{\lambda}{2}</tex>, во множестве <tex>[\lambda - \varepsilon, \lambda) \cup (\lambda, \lambda + \varepsilon]</tex> содержится собственное число, то есть в отрезке <tex>[\frac{\lambda}{2}, \|A\|]</tex> содержится счетно-бесконечное число точек спектра, чего быть не может, как мы уже показали выше. | Осталось проверить, что только <tex>0</tex> может быть предельной точкой. Пусть это не так, и какое-то <tex>\lambda \ne 0</tex> — предельная точка, это означает, что для любого <tex>\forall \varepsilon: 0 < \varepsilon < \frac{\lambda}{2}</tex>, во множестве <tex>[\lambda - \varepsilon, \lambda) \cup (\lambda, \lambda + \varepsilon]</tex> содержится собственное число, то есть в отрезке <tex>[\frac{\lambda}{2}, \|A\|]</tex> содержится счетно-бесконечное число точек спектра, чего быть не может, как мы уже показали выше. |
Версия 18:26, 11 июня 2013
Пусть
, непрерывна на ..
, — компактный оператор.
Будем изучать так называемые интегральные уравнения Фредгольма:
в .Фредгольмом в начале XX века была разработана теория решения таких уравнений без использования методов функционального анализа. В 30-е годы XX века Шаудер обобщил ее на абстрактные компактные операторы.
Пусть
— -пространство, , — компактный.Ставим задачу:
дано, когда разрешимо относительно ?— операторные уравнения второго рода (явно выделен ). Уравнения первого рода ( ) решаются гораздо сложней. Объясняется это достаточно просто: . Если , то, по теореме Банаха, непрерывно обратим, следовательно, при достаточно больших , разрешимо при любой левой части, причём решения будут непрерывно зависеть от . Интересна ситуация при . В случае компактного A ответ даёт теория Шаудера.
Будем считать
Утверждение: |
— компактный оператор. Тогда |
, таким образом, ядро — неподвижные точки . Пусть Допустим, что — единичный шар, — подпространство . . Так как — компактный, — компакт в , но в бесконечномерном пространстве шар ( будет шаром в подпространстве ) не может быть компактом, получаем противоречие. Значит, если — компактный, то . |
Теорема: |
Пусть , компактен, тогда замкнуто. |
Доказательство: |
Ранее мы доказали, что если уравнение допускает априорную оценку ( ), то замкнуто. Нужно доказать, что у есть априорная оценка. Пусть . Тогда . Значит, все решения уравнения записываются в форме , где — одно из решений, принадлежит . Но .Рассмотрим функцию от переменных . Эта функция — не что иное, как наилучшее приближение элементами конечномерного , теорема о наилучшем приближении гарантирует нам, что существуют ., среди всех решений уравнения существует решение с минимальной нормой. Его назовём , и далее докажем, что эти решения допускают априорную оценку через . Допустим, априорной оценки не существует, тогда можно построить последовательность и (минимальных по норме решений с правой частью ), таких, что .В силу линейности уравнения, можно выбрать с единичной нормой, тогда ., так как ограничено и компактен, то из можно выделить сходящуюся подпоследовательность . Тогда получаем .Но , значит, .То есть, .Получили, что , но, так как мы выбирали минимальное по норме , то — противоречие, значит, априорная оценка существует, замкнуто, и теорема доказана. |
Докажем теперь два утверждения.
Утверждение: |
Пусть , — компактный оператор.
Тогда . |
Идея доказательства подобных утверждений следующая: идем от противного и, пользуясь леммой Рисса, строим ограниченную последовательность точек. Применяя к ней , получаем последовательность, из которой можно выделить сходящуюся подпоследовательность. После этого ищем противоречие с условием.
Второе слагаемое является компактным оператором, обозначим его за , ., тогда . Пусть , и , тогда , то есть, .Допустим, что (строго). — подпространство .Применим к паре подпространств лемму Рисса:
Таким образом выстраиваем последовательность ., из можно выделить сходящуюся подпоследовательность. . Обозначим сумму в скобках за .Заметим, что .. Здесь первое слагаемое равно нулю по определению последовательности Но раз . Второе же, так как операторы и коммутируют, равно , и . , то , и , чего не может быть, поскольку в этом случае мы не сможем выделить из сходящуюся подпоследовательность. Поэтому наше предположение неверно, теорема доказана. |
Утверждение: |
Пусть — компактный оператор на банаховом , .
Тогда . |
: Пусть существует .Так как , то у уравнения существует решение, обозначим его ., то есть, . Заметим, что , в противном случае , что противоречит нашему предположению.Значит, (строго). Действуя аналогично, берем решение уравнения — , .Получаем бесконечную цепочку строго вложенных множеств , существование которой противоречит предыдущему утверждению, значит, .: Пусть .Тогда — замкнутое множество, , . , и . |
Альтернатива Фредгольма-Шаудера
Теорема (альтернатива Фредгольма-Шаудера): |
Пусть — компактный оператор и . Тогда возможно только две ситуации:
|
Доказательство: |
|
Теорема о счетности спектра компактного оператора
Рассмотрим
.- , тогда оператор необратим, и — собственное число, то есть .
- , тогда по альтернативе, оператор непрерывно обратим, то есть .
Таким образом, спектр состоит из собственных чисел, и, возможно, нуля. Теперь изучим мощность спектра:
Теорема: |
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0. |
Доказательство: |
Так как спектр линейного ограниченного оператора входит в круг радиуса , получаем . Рассмотрим , проверим, что на отрезке — конечное число точек спектра. Предположим обратное, тогда выделим подпоследовательность различных собственных значений (каждое из них больше ). Пусть им соответствуют собственные векторы .Покажем, что при любом , собственные векторы — линейно независимы, и что линейные оболочки и строго вложены друг в друга. Доказательство по индукции: для — тривиально. Пусть — ЛНЗ, покажем, что — тоже ЛНЗ. Покажем от противного: пусть . Подействуем на обе части оператором : . Разделив обе части на (он ненулевой), получим другое разложение по векторам : . Но так как разложение по линейно независимой системе должно быть единственно, то получаем, что , здесь либо нулевое, либо . Так как собственный вектор ненулевой, найдется такое , что , и тогда , то есть получили два одинаковых собственных значения, противоречие, а значит, — ЛНЗ и включение — строгое.Применим к цепи подпространств лемму Рисса о почти перпендикуляре: . Проделав такое для каждого , получим последовательность , заметим, что она ограничена 1. Определим . В силу компактности из можно выбрать сходящуюся последовательность точек. Проверим, что это сделать нельзя, противоречие будет связано с допущением о том, что на бесконечное количество точек.Составим разность . Проверим, что то, что находится в скобке, принадлежит .. . , . Подействуем A: . Разность . и, следовательно, принадлежит .
|