Коды Грея для перестановок — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
(Псевдокод получения кода Грея)
Строка 55: Строка 55:
  
 
   gray_code(n):
 
   gray_code(n):
   '''if''' n == 1:
+
   '''if''' n == 1
     '''return''' [{1}] <font color=darkgreen>// возращаем список из одной перестановки</font color=darkgreen>
+
     '''return''' [{1}] <font color=darkgreen> //возращаем список из одной перестановки</font color=darkgreen>
   '''else''':
+
   '''else'''
     result = [] <font color=darkgreen>// пустой список</font color=darkgreen>
+
     result = [] <font color=darkgreen> //пустой список</font color=darkgreen>
     perms = gray_code(n - 1) <font color=darkgreen>// perms {{---}} перестановки из n - 1 элемента</font color=darkgreen>
+
     perms = gray_code(n - 1) <font color=darkgreen> //perms {{---}} перестановки из n - 1 элемента</font color=darkgreen>
     backward = false <font color=darkgreen>// переменная которая говорит с какой стороны заполнять перестановку</font color=darkgreen>
+
     backward = false <font color=darkgreen> //переменная которая говорит с какой стороны заполнять перестановку</font color=darkgreen>
     '''for''' perm in perms: <font color=darkgreen>// perm {{---}} текущая перестановка</font color=darkgreen>
+
     '''for''' perm in perms <font color=darkgreen> //perm {{---}} текущая перестановка</font color=darkgreen>
       '''if''' backward:
+
       '''if''' backward
         current = concat(perm, {n})<font color=darkgreen>// дописываем {n} в конец perm</font color=darkgreen>
+
         current = concat(perm, {n})<font color=darkgreen> //дописываем {n} в конец perm</font color=darkgreen>
         result.append(current)<font color=darkgreen>// добавляем в ответ перестановку current</font color=darkgreen>
+
         result.append(current)<font color=darkgreen> //добавляем в ответ перестановку current</font color=darkgreen>
         '''for''' (i = n; i > 1; i--):
+
         '''for''' (i = n; i > 1; i--)
           swap(current[i - 1], current[i])<font color=darkgreen>//переставляем n</font color=darkgreen>
+
           swap(current[i - 1], current[i])<font color=darkgreen> //переставляем n</font color=darkgreen>
           result.append(current) <font color=darkgreen>//добавляем в ответ перестановку current</font color=darkgreen>
+
           result.append(current) <font color=darkgreen> //добавляем в ответ перестановку current</font color=darkgreen>
       '''else''':
+
       '''else'''
         current = concat({n}, perm) <font color=darkgreen>// дописываем {n} в начало perm</font color=darkgreen>
+
         current = concat({n}, perm) <font color=darkgreen> //дописываем {n} в начало perm</font color=darkgreen>
         result.append(current) <font color=darkgreen>//добавляем в ответ перестановку current</font color=darkgreen>
+
         result.append(current) <font color=darkgreen> //добавляем в ответ перестановку current</font color=darkgreen>
         '''for''' (i = 1; i < n; i++):
+
         '''for''' (i = 1; i < n; i++)
           swap(current[i], current[i + 1]) <font color=darkgreen>//переставляем n</font color=darkgreen>
+
           swap(current[i], current[i + 1]) <font color=darkgreen> //переставляем n</font color=darkgreen>
           result.append(current) <font color=darkgreen>//добавляем в ответ перестановку current</font color=darkgreen>
+
           result.append(current) <font color=darkgreen> //добавляем в ответ перестановку current</font color=darkgreen>
       backward = !backward <font color=darkgreen>//меняем состояние backward</font color=darkgreen>
+
       backward = !backward <font color=darkgreen> //меняем состояние backward</font color=darkgreen>
 
     '''return''' result <font color=darkgreen>//возвращаем ответ в виде списка</font color=darkgreen>
 
     '''return''' result <font color=darkgreen>//возвращаем ответ в виде списка</font color=darkgreen>
  

Версия 23:09, 6 декабря 2014

Коды Грея для перестановок(англ. Gray code for permutation) — упорядочение перестановок, при котором соседние перестановки отличаются только элементарной транспозицией.

Элементарная транспозиция(англ. Adjacent transposition) — перестановка местами двух соседних элементов.

Построение кода Грея для перестановок

Будем строить код Грея для длины [math]n = k[/math]. Предположим, что нам известен код Грея для перестановок длиной [math]k - 1[/math]. Возьмем первую перестановку из известного нам кода. Она имеет следующий вид: [math]\{a_1, a_2, a_3, \dots, a_{k-1}\}[/math]

Сначала запишем число [math]k[/math] в начало этой перестановки, после чего будем двигать его вправо элементарными транспозициями (подчёркнуты пары переставляемых элементов).

  • [math]\{\underline{k, a_1}, a_2, a_3, \dots, a_{k-1}\}[/math]
  • [math]\{a_1, \underline{k, a_2}, a_3, \dots, a_{k-1}\}[/math]
  • [math]\{a_1, a_2, \underline{k, a_3}, \dots, a_{k-1}\}[/math]
  • [math]\{a_1, a_2, a_3, \underline{k, \dots}, a_{k-1}\}[/math]
  • [math]\{a_1, a_2, a_3, \dots, \underline{k, a_{k-1}}\}[/math]
  • [math]\{a_1, a_2, a_3, \dots, a_{k-1}, k\}[/math]

Получим [math]k[/math] различных перестановок, отличающихся одной элементарной транспозицией. Возьмем следующую перестановку из кода Грея для перестановок длины [math]k - 1[/math] и припишем в конце число [math]k[/math]. Эта перестановка отличается на одну элементарную транспозицию (последние элементы совпадают, а префиксы длины [math]k - 1[/math] отличаются на элементарную транспозицию). Пусть она имеет следующий вид:

[math]\{b_1, b_2,b_3, \dots, b_{k-1}\}[/math]

Элемент [math]k[/math] записываем в конец и начинаем "двигать" его влево:

  • [math]\{b_1, b_2, b_3, \dots, \underline{b_{k-1}, k}\}[/math]
  • [math]\{b_1, b_2, b_3, \underline{\dots, k}, b_{k-1}\}[/math]
  • [math]\{b_1, b_2, \underline{b_3, k}, \dots, b_{k-1}\}[/math]
  • [math]\{b_1, \underline{b_2, k}, b_3, \dots, b_{k-1}\}[/math]
  • [math]\{\underline{b_2, k}, b_1, b_3, \dots, b_{k-1}\}[/math]
  • [math]\{k, b_1, b_2, b_3, \dots, b_{k-1}\}[/math]

Продолжаем аналогично. Для каждой перестановки дописываем [math]k[/math] в один конец (поочерёдно), и с помощью элементарных транспозиций двигаем в другой конец, при этом добавляя каждую промежуточную перестановку в список.

Таким образом получаем для каждой перестановки длиной [math]k - 1[/math] (всего [math](k - 1)![/math] штук) по [math]k[/math] новых перестановок, в сумме [math]k\cdot(k - 1)! = k![/math] перестановок. Все они различны, так как для любых двух перестановок из нового кода Грея элемент [math]k[/math] стоит на разных позициях,а если [math]k[/math] стоит на одной и той же позиции, то эти перестановки образованы от разных перестановок длиной [math]k - 1[/math]. Так же все соседние перестановки отличаются ровно в одной элементарной транспозиции. Итого, мы получили список из [math]k![/math] различных перестановок длиной [math]k[/math], причём соседние отличаются в одной элементарной транспозиции.

Пример применения алгоритма

Рассмотрим код Грея для длины [math]n = 2[/math]:

  • [math]\{2, 1\}[/math]
  • [math]\{1, 2\}[/math]

Тогда следуя алгоритму полученный код будет выглядеть так (подчёркнуты пары переставляемых элементов):

  • [math]\{\underline{3, 2}, 1\}[/math] — берем первую перестановку и добавляем в начало тройку
  • [math]\{2, \underline{3, 1}\}[/math] — двигаем до последней позиции
  • [math]\{\underline{2, 1}, 3\}[/math]
  • [math]\{1, \underline{2, 3}\}[/math] — берем следующую перестановку и записываем тройку в конец
  • [math]\{\underline{1, 3}, 2\}[/math] — двигаем в начало
  • [math]\{3, 1, 2\}[/math]

Код Грея получен.

Псевдокод получения кода Грея

Получаем код Грея рекурсивно, в базовом случае [math]n = 1[/math] возвращаем список из одной перестановки [math]\{1\}[/math].

 gray_code(n):
 if n == 1
   return [{1}]  //возращаем список из одной перестановки
 else
   result = []  //пустой список
   perms = gray_code(n - 1)  //perms — перестановки из n - 1 элемента
   backward = false  //переменная которая говорит с какой стороны заполнять перестановку
   for perm in perms  //perm — текущая перестановка
     if backward
       current = concat(perm, {n}) //дописываем {n} в конец perm
       result.append(current) //добавляем в ответ перестановку current
       for (i = n; i > 1; i--)
          swap(current[i - 1], current[i]) //переставляем n
          result.append(current)  //добавляем в ответ перестановку current
     else
       current = concat({n}, perm)  //дописываем {n} в начало perm
       result.append(current)  //добавляем в ответ перестановку current
       for (i = 1; i < n; i++)
         swap(current[i], current[i + 1])  //переставляем n
         result.append(current)  //добавляем в ответ перестановку current
      backward = !backward  //меняем состояние backward
   return result //возвращаем ответ в виде списка

Примеры кодов Грея для перестановок

Перестановки для n = 2

Номер Перестановка
[math]1[/math] [math]\{1, 2\} [/math]
[math]2[/math] [math]\{2, 1\} [/math]

Перестановки для n = 3

Номер Перестановка
[math]1[/math] [math]\{1, 2, 3\} [/math]
[math]2[/math] [math]\{1, 3, 2\} [/math]
[math]3[/math] [math]\{3, 1, 2\}[/math]
[math]4[/math] [math]\{3, 2, 1\}[/math]
[math]5[/math] [math]\{2, 3, 1\} [/math]
[math]6[/math] [math]\{2, 1, 3\} [/math]

Сведение задачи построения кода Грея для перестановок к графам

Последовательность перестановок, полученная с помощью данного алгоритма имеет интересную интерпретацию. Так, если рассмотреть граф, вершины которого соответствуют всем перестановкам и в котором две вершины, соответствующие перестановкам [math]f[/math] и [math]g[/math], соединены ребром, если [math]g[/math] образуется из [math]f[/math] однократной транспозицией соседних элементов, то полученная последовательность является гамильтоновым путем в этом графе.

См. также

Источники информации

  • Романовский И.В. Дискретный Анализ - "Санкт-Петербург", 2003. - стр. 39-41 - ISBN 5-94157-330-8