Материал из Викиконспекты
|
|
Строка 10: |
Строка 10: |
| }} | | }} |
| == Связь между <tex>\varkappa</tex>, <tex>\lambda</tex> и минимальной степенью вершины == | | == Связь между <tex>\varkappa</tex>, <tex>\lambda</tex> и минимальной степенью вершины == |
| + | Пускай минимальная степень вершины графа G обозначается буквой <tex>\delta</tex>. Тогда: |
| {{Теорема | | {{Теорема |
| |statement= | | |statement= |
| Для любого графа G справедливо следующее неравенство:<br/> | | Для любого графа G справедливо следующее неравенство:<br/> |
− | <tex>\varkappa \le\lambda \le \delta </tex>, где <tex>\delta</tex> - минимальная степень вершины графа G | + | <tex>\varkappa \le\lambda \le \delta </tex> |
| |proof= | | |proof= |
| 1) Проверим второе неравенство. Если в графе G нет ребер, то <tex> \lambda = 0 </tex>. Если ребра есть, то несвязный граф получаем из данного, удаляя все ребра, инцидентные вершине с наименьшей степенью. В любом случае <tex> \lambda \le \delta </tex>. <br/> | | 1) Проверим второе неравенство. Если в графе G нет ребер, то <tex> \lambda = 0 </tex>. Если ребра есть, то несвязный граф получаем из данного, удаляя все ребра, инцидентные вершине с наименьшей степенью. В любом случае <tex> \lambda \le \delta </tex>. <br/> |
Версия 07:07, 25 октября 2010
Определения
Определение: |
Вершинной связностью [math]\varkappa[/math] графа G называется наименьшее число вершин, удаление которых приводит к несвязному или тривиальному графу. |
Определение: |
Реберной связностью [math]\lambda[/math] графа G называется наименьшее количество ребер, удаление которых приводит к несвязному или тривиальному графу. |
Связь между [math]\varkappa[/math], [math]\lambda[/math] и минимальной степенью вершины
Пускай минимальная степень вершины графа G обозначается буквой [math]\delta[/math]. Тогда:
Теорема: |
Для любого графа G справедливо следующее неравенство:
[math]\varkappa \le\lambda \le \delta [/math] |
Доказательство: |
[math]\triangleright[/math] |
1) Проверим второе неравенство. Если в графе G нет ребер, то [math] \lambda = 0 [/math]. Если ребра есть, то несвязный граф получаем из данного, удаляя все ребра, инцидентные вершине с наименьшей степенью. В любом случае [math] \lambda \le \delta [/math].
2) Чтобы проверить первое неравенство нужно рассмотреть несколько случаев. Если G - несвязный или тривиальный граф, то [math] \varkappa = \lambda = 0 [/math]. Если G связен и имеет мост x, то [math]\lambda = 1 [/math]. В последнем случае [math] \varkappa = 1 [/math], поскольку или граф G имеет точку сочленения, инцидентную ребру x, или же G = K2. Наконец, предположим, что граф G содержит множество из [math] \lambda \ge 2 [/math] ребер, удаление которых делает его несвязным. Ясно, что удаляя [math]\lambda - 1 [/math] ребер из этого множества получаем граф, имеющий мост x = uv. Для каждого из этих [math]\lambda - 1 [/math] ребер выберем какую-либо инцидентную с ним вершину отличную от u и v. Удаление выбранных вершин приводит к удалению [math]\lambda - 1 [/math] (а возможно, и большего числа) ребер. Если получаемый после такого удаления граф не связен, то [math]\varkappa \lt \lambda [/math]; если же он связен, то в нем есть мост x, и поэтому удаление вершины u или v приводит либок несвязному, либо к тривиальному графу. в любом случае [math] \varkappa \le \lambda[/math]. |
[math]\triangleleft[/math] |
Теорема: |
Для любых натуральных чисел a, b, c, таких что a ≤ b ≤ c, существует граф G, у которого [math]\varkappa = a, \lambda = b[/math] и [math]\delta = c [/math]. |
Доказательство: |
[math]\triangleright[/math] |
Рассмотрим граф G, являющийся объединением двух полных графов [math]G_1[/math] и [math]G_2[/math], содержащих c + 1 вершину. Отметим b вершин, принадлежащих подграфу [math]G_1[/math] и a вершин, принадлежащих подграфу [math]G_2[/math]. Добавим в граф G b ребер так, чтобы каждое ребро было инцидентно помеченной вершине, лежащей в подграфе [math]G_1[/math] и помеченной вершине, лежащей в подграфе [math]G_2[/math], причем не осталось ни одной помеченной вершины, у которой не появилось хотя бы одно новое ребро, инцидентное ей.
Тогда:
1) Поскольку b ≤ c, то было как минимум две непомеченные вершины, поэтому [math] \delta[/math] = с, так как минимальные степени вершин графов [math]G_1[/math] и [math]G_2[/math] была c, а степени их вершин не уменьшались.
2) Заметим, что между двумя вершинами графа G существует не меньше a вершинно-непересекающихся простых цепей, следовательно по теореме Менгера [math]\varkappa [/math] ≥ a. Однако если удалить из графа G помеченные вершины его подграфа [math]G_2[/math], то граф G потеряет связность. Значит, [math]\varkappa [/math] = a.
3) Аналогично рассуждению пункта 2, легко убедится, что [math]\lambda [/math] = b. |
[math]\triangleleft[/math] |
Литература
- Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6