Вершинная, рёберная связность, связь между ними и минимальной степенью вершины — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 16: Строка 16:
 
<tex>\varkappa \le\lambda \le \delta </tex>
 
<tex>\varkappa \le\lambda \le \delta </tex>
 
|proof=
 
|proof=
 +
[[Файл:K5.png|thumb|right|150x150px|Полный граф. <tex> \lambda = \delta = \varkappa = 4</tex>]]
 
1) Проверим второе неравенство. Если в графе G нет ребер, то <tex> \lambda = 0 </tex>. Если ребра есть, то несвязный граф получаем из данного, удаляя все ребра, инцидентные вершине с наименьшей степенью. В любом случае <tex> \lambda \le \delta </tex>. <br/>
 
1) Проверим второе неравенство. Если в графе G нет ребер, то <tex> \lambda = 0 </tex>. Если ребра есть, то несвязный граф получаем из данного, удаляя все ребра, инцидентные вершине с наименьшей степенью. В любом случае <tex> \lambda \le \delta </tex>. <br/>
 
2) Чтобы проверить первое неравенство нужно рассмотреть несколько случаев. Если  '''G'''  - несвязный или тривиальный граф, то  <tex> \varkappa = \lambda = 0 </tex>. Если G связен и имеет мост x, то <tex>\lambda = 1 </tex>. В последнем случае <tex> \varkappa = 1 </tex>, поскольку или граф G имеет точку сочленения, инцидентную ребру x, или же G = K<sub>2</sub>. Наконец, предположим, что граф G содержит множество из <tex> \lambda \ge 2 </tex> ребер, удаление которых делает его несвязным. Ясно, что удаляя <tex>\lambda - 1 </tex> ребер из этого множества получаем граф, имеющий мост x = uv. Для каждого из этих <tex>\lambda - 1 </tex> ребер выберем какую-либо инцидентную с ним вершину отличную от u и v.  Удаление выбранных вершин приводит к удалению <tex>\lambda - 1 </tex> (а возможно, и большего числа) ребер. Если получаемый после такого удаления граф не связен, то <tex>\varkappa < \lambda </tex>; если же он связен, то в нем есть мост x, и поэтому удаление вершины u или ''v'' приводит либок несвязному, либо к тривиальному графу. в любом случае <tex> \varkappa \le \lambda</tex>.
 
2) Чтобы проверить первое неравенство нужно рассмотреть несколько случаев. Если  '''G'''  - несвязный или тривиальный граф, то  <tex> \varkappa = \lambda = 0 </tex>. Если G связен и имеет мост x, то <tex>\lambda = 1 </tex>. В последнем случае <tex> \varkappa = 1 </tex>, поскольку или граф G имеет точку сочленения, инцидентную ребру x, или же G = K<sub>2</sub>. Наконец, предположим, что граф G содержит множество из <tex> \lambda \ge 2 </tex> ребер, удаление которых делает его несвязным. Ясно, что удаляя <tex>\lambda - 1 </tex> ребер из этого множества получаем граф, имеющий мост x = uv. Для каждого из этих <tex>\lambda - 1 </tex> ребер выберем какую-либо инцидентную с ним вершину отличную от u и v.  Удаление выбранных вершин приводит к удалению <tex>\lambda - 1 </tex> (а возможно, и большего числа) ребер. Если получаемый после такого удаления граф не связен, то <tex>\varkappa < \lambda </tex>; если же он связен, то в нем есть мост x, и поэтому удаление вершины u или ''v'' приводит либок несвязному, либо к тривиальному графу. в любом случае <tex> \varkappa \le \lambda</tex>.
Строка 21: Строка 22:
 
{{Теорема
 
{{Теорема
 
|statement=
 
|statement=
  Для любых натуральных чисел a, b, c, таких что a &le; b &le; c, существует граф G, у которого <tex>\varkappa  = a, \lambda  = b</tex> и <tex>\delta = c </tex>.
+
  Для любых натуральных чисел a, b, c, таких что a &le; b &le; c, существует граф G, у которого <tex>\varkappa  = a, \lambda  = b</tex> и <tex>\delta = c </tex>
|proof=
+
|proof=[[Файл:LambdaKappaDeltaGraph.png|thumb|left|250x600px|Граф, в котором <tex> \delta = 4</tex>, <tex>\lambda = 3</tex>, <tex>\varkappa = 2</tex>.]]Рассмотрим граф G, являющийся объединением двух полных графов <tex>G_1</tex> и <tex>G_2</tex>, содержащих c + 1 вершину. Отметим b вершин, принадлежащих подграфу <tex>G_1</tex> и a вершин, принадлежащих подграфу <tex>G_2</tex>. Добавим в граф G b ребер так, чтобы каждое ребро было инцидентно помеченной вершине, лежащей в  подграфе <tex>G_1</tex> и помеченной вершине, лежащей в подграфе <tex>G_2</tex>, причем не осталось ни одной помеченной вершины, у которой не появилось хотя бы одно новое ребро, инцидентное ей.
Рассмотрим граф G, являющийся объединением двух полных графов <tex>G_1</tex> и <tex>G_2</tex>, содержащих c + 1 вершину. Отметим b вершин, принадлежащих подграфу <tex>G_1</tex> и a вершин, принадлежащих подграфу <tex>G_2</tex>. Добавим в граф G b ребер так, чтобы каждое ребро было инцидентно помеченной вершине, лежащей в  подграфе <tex>G_1</tex> и помеченной вершине, лежащей в подграфе <tex>G_2</tex>, причем не осталось ни одной помеченной вершины, у которой не появилось хотя бы одно новое ребро, инцидентное ей.
 
 
Тогда: <br>
 
Тогда: <br>
 
1) Поскольку b &le; c, то было как минимум две непомеченные вершины, поэтому <tex> \delta</tex> = с, так как минимальные степени вершин графов <tex>G_1</tex> и <tex>G_2</tex> была c, а степени их вершин не уменьшались.<br>
 
1) Поскольку b &le; c, то было как минимум две непомеченные вершины, поэтому <tex> \delta</tex> = с, так как минимальные степени вершин графов <tex>G_1</tex> и <tex>G_2</tex> была c, а степени их вершин не уменьшались.<br>
Строка 31: Строка 31:
  
 
== Литература ==
 
== Литература ==
* Харари Фрэнк '''Теория графов''' = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 2-е. — М.: Едиториал УРСС, 2003. — 296 с. — ISBN 5-354-00301-6
+
* Харари Фрэнк '''Теория графов''' = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 4-е. ISBN 978-5-397-00622-4
 
 
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Алгоритмы и структуры данных]]
 
[[Категория: Связность в графах]]
 
[[Категория: Связность в графах]]

Версия 07:44, 25 октября 2010

Определения

Определение:
Вершинной связностью [math]\varkappa[/math] графа G называется наименьшее число вершин, удаление которых приводит к несвязному или тривиальному графу.


Определение:
Реберной связностью [math]\lambda[/math] графа G называется наименьшее количество ребер, удаление которых приводит к несвязному или тривиальному графу.

Связь между [math]\varkappa[/math], [math]\lambda[/math] и минимальной степенью вершины

Пускай минимальная степень вершины графа G обозначается буквой [math]\delta[/math]. Тогда:

Теорема:
Для любого графа G справедливо следующее неравенство:
[math]\varkappa \le\lambda \le \delta [/math]
Доказательство:
[math]\triangleright[/math]
Полный граф. [math] \lambda = \delta = \varkappa = 4[/math]

1) Проверим второе неравенство. Если в графе G нет ребер, то [math] \lambda = 0 [/math]. Если ребра есть, то несвязный граф получаем из данного, удаляя все ребра, инцидентные вершине с наименьшей степенью. В любом случае [math] \lambda \le \delta [/math].

2) Чтобы проверить первое неравенство нужно рассмотреть несколько случаев. Если G - несвязный или тривиальный граф, то [math] \varkappa = \lambda = 0 [/math]. Если G связен и имеет мост x, то [math]\lambda = 1 [/math]. В последнем случае [math] \varkappa = 1 [/math], поскольку или граф G имеет точку сочленения, инцидентную ребру x, или же G = K2. Наконец, предположим, что граф G содержит множество из [math] \lambda \ge 2 [/math] ребер, удаление которых делает его несвязным. Ясно, что удаляя [math]\lambda - 1 [/math] ребер из этого множества получаем граф, имеющий мост x = uv. Для каждого из этих [math]\lambda - 1 [/math] ребер выберем какую-либо инцидентную с ним вершину отличную от u и v. Удаление выбранных вершин приводит к удалению [math]\lambda - 1 [/math] (а возможно, и большего числа) ребер. Если получаемый после такого удаления граф не связен, то [math]\varkappa \lt \lambda [/math]; если же он связен, то в нем есть мост x, и поэтому удаление вершины u или v приводит либок несвязному, либо к тривиальному графу. в любом случае [math] \varkappa \le \lambda[/math].
[math]\triangleleft[/math]
Теорема:
Для любых натуральных чисел a, b, c, таких что a ≤ b ≤ c, существует граф G, у которого [math]\varkappa = a, \lambda = b[/math] и [math]\delta = c [/math]
Доказательство:
[math]\triangleright[/math]
Граф, в котором [math] \delta = 4[/math], [math]\lambda = 3[/math], [math]\varkappa = 2[/math].
Рассмотрим граф G, являющийся объединением двух полных графов [math]G_1[/math] и [math]G_2[/math], содержащих c + 1 вершину. Отметим b вершин, принадлежащих подграфу [math]G_1[/math] и a вершин, принадлежащих подграфу [math]G_2[/math]. Добавим в граф G b ребер так, чтобы каждое ребро было инцидентно помеченной вершине, лежащей в подграфе [math]G_1[/math] и помеченной вершине, лежащей в подграфе [math]G_2[/math], причем не осталось ни одной помеченной вершины, у которой не появилось хотя бы одно новое ребро, инцидентное ей.

Тогда:
1) Поскольку b ≤ c, то было как минимум две непомеченные вершины, поэтому [math] \delta[/math] = с, так как минимальные степени вершин графов [math]G_1[/math] и [math]G_2[/math] была c, а степени их вершин не уменьшались.
2) Заметим, что между двумя вершинами графа G существует не меньше a вершинно-непересекающихся простых цепей, следовательно по теореме Менгера [math]\varkappa [/math] ≥ a. Однако если удалить из графа G помеченные вершины его подграфа [math]G_2[/math], то граф G потеряет связность. Значит, [math]\varkappa [/math] = a.

3) Аналогично рассуждению пункта 2, легко убедится, что [math]\lambda [/math] = b.
[math]\triangleleft[/math]

Литература

  • Харари Фрэнк Теория графов = Graph theory/Пер. с англ. и предисл. В. П. Козырева. Под ред. Г.П.Гаврилова. Изд. 4-е. ISBN 978-5-397-00622-4