Квантовые конечные автоматы — различия между версиями
Shersh (обсуждение | вклад) (→Многомерный квантовый конечный автомат) |
Shersh (обсуждение | вклад) (→Многомерный квантовый конечный автомат) |
||
Строка 78: | Строка 78: | ||
Переход в новое состояние кубита остается таким же, но после каждого перехода кубит коллпасирует в одно из трёх гильбертовых пр-в <math>\mathcal{H}_a, \mathcal{H}_r , \mathcal{H}_{non}</math>. Для того чтобы определить вероятность автомата находиться в допускающем состоянии нужно : | Переход в новое состояние кубита остается таким же, но после каждого перехода кубит коллпасирует в одно из трёх гильбертовых пр-в <math>\mathcal{H}_a, \mathcal{H}_r , \mathcal{H}_{non}</math>. Для того чтобы определить вероятность автомата находиться в допускающем состоянии нужно : | ||
− | :<math>\operatorname{Pr}_a (s) = \Vert P_a |\psi\rangle \Vert^2</math>, где <tex>s</tex> {{---}} | + | :<math>\operatorname{Pr}_a (s) = \Vert P_a |\psi\rangle \Vert^2</math>, где <tex>s</tex> {{---}} входная строчка |
==См. также== | ==См. также== |
Версия 14:15, 11 января 2015
Неформально говоря квантовый конечный автомат — это квантовый аналог конечного автомата, который использует квантовые гейты. Такие автоматы позволяют допускать некотые языки, имея при этом экспоненциально меньший размер, чем обычные автоматы.
Содержание
Определение
Определение: |
Квантовый конечный автомат (ККА) (англ. Quantum finite automata, QFA) — это кортеж :
| , где
Кроме того, ККА является частным случаем Геометрического конечного автомата и Топологического конечного автомата[1].
Принцип работы
- На вход подается строчка .
- На выходе мы получаем число , являющееся вероятностью данного конечного автомата быть в допускающем состоянии.
Описание
Для начала воспользуемся графовым представлением ДКА. Пусть в нем вершин, и все вершины пронумерованы. Тогда для представления такого графа можно воспользоваться набором матриц смежности таких, что каждая матрица размера и что каждому символу сопоставляется единственная матрица из этого набора. Каждая матрица состоит из и , причём означает переход из состояния в по символу , а — его отсутствие. В этом случае, текущее состояние автомата записывается как вектор, размерности , в котором будет лишь одна единица, обозначающая текущее положение состояния. При помощи такого описания можно легко делать переходы из нынешнего состояние в новое состояние по символу обыкновенным умножением матриц.
Пусть у нас есть ДКА с
вершинами и его . Тогда по описанному определению можно составить матрицы смежности размерности . Также введем -размерный вектор , описывающий состояние ДКА, a — начальное состояние автомата. Тогда для перехода из состояния в по строчке нужно воспользоваться правилом умножения матриц из линейной алгебры :Описанное выше по сути и является ККА, но в амплитуды вероятностей, a матрицы — унитарные матрицы. Для ККА характерна геометрическая интерпретация в пространстве . С этой стороны вектор является точкой, a — операторы эволюции в представлении Шредингера [2].
записываютсяКроме того, можно упомянуть несколько особенностей ККА:
- НКА. Из-за свойства НКА в векторе алгоритм Томпсона, то построенные на их основе Квантовые конечные автоматы не будут эквивалентны. Эта проблема является одной из научно-исследовательских задач в теории ККА. и в столбцах матриц может находиться несколько . Если в этом случаи рассмотреть
- Вероятностный конечный автомат. Для его построения нужно всего лишь в ККА использовать стохастические матрицы[3] для и вектор вероятностей состояний для . Одно из свойств — сумма всех элементов равна , и для того, чтобы во всех переходах сохранялось это свойство, и нужны стохастические матрицы.
- Марковская цепь. При вводе строчек марковской цепи[4]. при больших одномерный ККА может быть эквивалентен
Одномерный квантовый конечный автомат
Авторы одномерного (англ. Measure-one, 1-way) ККА — Cris Moore и James P. Crutchfield (2000). Главное свойство одномерного ККА — допускать регулярный язык. Автомат такого типа с состояниями представляется в виде кубита c состояниями.
- .
Такой кубит приносит в пространство метрику Фубини-Штуди[5] . Матрицы смежности остаются унитарными, а переход в новое сосояние по символу :
- .
Переход в допускающее состояние производится матрицей-проектором[6] .
Вероятность
, где равна :Многомерный квантовый конечный автомат
Определение: |
Многомерный (или Двухмерный) квантовый конечный автомат (англ. Measure-many, 2-way QFA) — это кортеж :
| , где
Многомерный ККА был введен Attila Kondacs и John Watrous в 1997. Его главное свойство — допускать нерегулярный язык
за линейное время.Принципы многомерного ККА очень схожи с одномерным, за исключением применения матрицы гильбертово пространство. Пусть у нас есть гильбертово пространство :
после каждой итерации символа строки. Для формального определения понадобится, где — допускающее пр-во , — отвергающее пр-во , — промежуточное пр-во. Для каждого пр-ва существует набор базисных ординальных векторов соответственно :
- [7] , где — линейная оболочка
Так же в многомерном ККА присутствуют 3 матрицы-проектора :
, и для каждого гильбертово пр-ва :Переход в новое состояние кубита остается таким же, но после каждого перехода кубит коллпасирует в одно из трёх гильбертовых пр-в
. Для того чтобы определить вероятность автомата находиться в допускающем состоянии нужно :- , где — входная строчка
См. также
- Детерминированные конечные автоматы
- Недетерминированные конечные автоматы
- Построение по НКА эквивалентного ДКА, алгоритм Томпсона
Примечания
Источники информации
- Andris Ambainis, QUANTUM FINITE AUTOMATA
- Wikipedia — Quantum finite automata