Quotient filter — различия между версиями

Материал из Викиконспекты
Перейти к: навигация, поиск
Строка 6: Строка 6:
 
==Описание структуры данных==
 
==Описание структуры данных==
  
Фильтр представляет собой [[:Хеш-таблица|хеш-таблицу]], в которой харанится часть ключа и <tex>3</tex> бита дополнительной информации. Они используются для разрешения ситуации, когда хеш различных ключей указывает на одну ячейку в хеш таблице. В Quotient filter хеш функция возвращает <tex>p</tex> битовый хеш, последние r бит которого называются остатком, а <tex>q = p - r</tex> старших бит называются частным (англ. ''quotient''), отсюда название структуры Quotient filter<ref>Knuth, Donald (1973). The Art of Computer Programming:Searching and Sorting, volume 3. Section 6.4, exercise 13: Addison Wesley</ref>. Размер хеш таблицы составляет <tex>2^q</tex>.
+
Фильтр представляет собой [[:Хеш-таблица|хеш-таблицу]], в которой харанится часть ключа и <tex>3</tex> бита дополнительной информации. Они используются для разрешения ситуации, когда хеш различных ключей указывает на одну ячейку в хеш-таблице. В quotient filter хеш-функция возвращает <tex>p</tex> битовый хеш, последние r бит которого называются '''остатком''' (англ. ''remainder''), а <tex>q = p - r</tex> старших бит называются '''частным''' (англ. ''quotient''), отсюда название структуры Quotient filter<ref>Knuth, Donald (1973). The Art of Computer Programming:Searching and Sorting, volume 3. Section 6.4, exercise 13: Addison Wesley</ref>. Размер хеш-таблицы составляет <tex>2^q</tex>.
  
Пусть у нас есть ключ <tex>K</tex>, его хеш обозначим <tex>H(k)</tex>, остаток <tex>H_r</tex> и частное <tex>H_q</tex>. Попробуем поместить остаток в хеш таблицу в ячейку <tex>H_q</tex>, называемую канонической. Возможно, ячейка уже занята, так как существует шанс полных коллизий (остаток и частное разных ключей совпадают) или частичных коллизий (частное разных ключей совпадают). Когда каноническая ячейка занята, помещаем остаток в какую-то ячейку справа.
+
Пусть у нас есть ключ <tex>K</tex>, его хеш обозначим <tex>H(k)</tex>, остаток <tex>H_r</tex> и частное <tex>H_q</tex>. Попробуем поместить остаток в хеш-таблицу в ячейку <tex>H_q</tex>, называемую канонической. Возможно, ячейка уже занята, так как существует шанс полных коллизий (остаток и частное разных ключей совпадают) или частичных коллизий (частное разных ключей совпадают). Когда каноническая ячейка занята, помещаем остаток в какую-то ячейку справа.
  
Последовательность ячеек, имеющих одинаковые частные называется пробегом (англ. ''run''). Возможно, что начало пробега не занимает канонический слот, если он уже занят каким-то другим пробегом.   
+
Последовательность ячеек, имеющих одинаковые частные называется '''пробегом''' (англ. ''run''). Возможно, что начало пробега не занимает канонический слот, если он уже занят каким-то другим пробегом.   
  
Пробег, у которого первый элемент занимает каноническую ячейку, является началом кластера. Кластер (англ. ''cluster'') {{---}} объединение последовательных пробегов, концом кластера является пустая ячейка или начало другого кластера.
+
Пробег, у которого первый элемент занимает каноническую ячейку, является началом кластера. '''Кластер''' (англ. ''cluster'') {{---}} объединение последовательных пробегов, концом кластера является пустая ячейка или начало другого кластера.
  
 
Три дополнительных бита имеют следующие функции:
 
Три дополнительных бита имеют следующие функции:
# бит занятости {{---}} равен единице, если ячейка является канонической для некого ключа в фильтре, сохраненого необязательно в этой ячейке.
+
* бит занятости {{---}} равен единице, если ячейка является канонической для некого ключа в фильтре, сохраненого необязательно в этой ячейке,
# бит продолжения {{---}} равен единице, если ячейка занята, но не первым элементов пробеге.
+
* бит продолжения {{---}} равен единице, если ячейка занята, но не первым элементов пробеге,
# бит сдвига {{---}} равен единице, если пробег сдвинут относительно канонического слота.
+
* бит сдвига {{---}} равен единице, если пробег сдвинут относительно канонического слота.
  
 
{| class="wikitable" border=1
 
{| class="wikitable" border=1
Строка 57: Строка 57:
  
 
* Последовательное расположение данных. Можно загружать только <tex>1</tex> кластер, уменьшая количество кеш промахов.
 
* Последовательное расположение данных. Можно загружать только <tex>1</tex> кластер, уменьшая количество кеш промахов.
* Простое увеличение или уменьшение хеш таблицы, достаточно перенести один бит из остатка в частное или наоборот.
+
* Простое увеличение или уменьшение хеш-таблицы, достаточно перенести один бит из остатка в частное или наоборот.
 
* Простое слияние двух фильтров.
 
* Простое слияние двух фильтров.
  

Версия 21:35, 6 июня 2015

Quotient filter — вероятностная структура данных, позволяющая проверить принадлежность элемента множеству. При этом существует возможность получить ложноположительное срабатывание (элемента в множестве нет, но структура данных сообщает, что он есть), но не ложноотрицательное (элемент в множестве есть, но структура данных сообщает, что его нет).

Существует связь между размером хранилища и шансом ложноположительного срабатывания. Поддерживаются операции добавления нового элемента в множество. С увеличением размера хранимого множества повышается вероятность ложного срабатывания. Структуру разработал Michael Bender в 2011 году[1] как замена фильтра Блума.

Описание структуры данных

Фильтр представляет собой хеш-таблицу, в которой харанится часть ключа и [math]3[/math] бита дополнительной информации. Они используются для разрешения ситуации, когда хеш различных ключей указывает на одну ячейку в хеш-таблице. В quotient filter хеш-функция возвращает [math]p[/math] битовый хеш, последние r бит которого называются остатком (англ. remainder), а [math]q = p - r[/math] старших бит называются частным (англ. quotient), отсюда название структуры Quotient filter[2]. Размер хеш-таблицы составляет [math]2^q[/math].

Пусть у нас есть ключ [math]K[/math], его хеш обозначим [math]H(k)[/math], остаток [math]H_r[/math] и частное [math]H_q[/math]. Попробуем поместить остаток в хеш-таблицу в ячейку [math]H_q[/math], называемую канонической. Возможно, ячейка уже занята, так как существует шанс полных коллизий (остаток и частное разных ключей совпадают) или частичных коллизий (частное разных ключей совпадают). Когда каноническая ячейка занята, помещаем остаток в какую-то ячейку справа.

Последовательность ячеек, имеющих одинаковые частные называется пробегом (англ. run). Возможно, что начало пробега не занимает канонический слот, если он уже занят каким-то другим пробегом.

Пробег, у которого первый элемент занимает каноническую ячейку, является началом кластера. Кластер (англ. cluster) — объединение последовательных пробегов, концом кластера является пустая ячейка или начало другого кластера.

Три дополнительных бита имеют следующие функции:

  • бит занятости — равен единице, если ячейка является канонической для некого ключа в фильтре, сохраненого необязательно в этой ячейке,
  • бит продолжения — равен единице, если ячейка занята, но не первым элементов пробеге,
  • бит сдвига — равен единице, если пробег сдвинут относительно канонического слота.
Бит занятости Бит Продолжения Бит сдвига Описание
0 0 0 Пустая ячейка.
0 0 1 Ячейка содержит начало пробега, сдвинутого относительно канонического слота.
0 1 0 Не используется.
0 1 1 Ячейка содержит элемент пробега(не первый), сдвинутого относительно канонического слота.
1 0 0 Ячейка содержит первый элемет пробега в его каноническом слоте.
1 0 1 Ячейка содержит первый элемет пробега, сдвинутого относительно канонического слота. Ячейка является канонической, для существующего пробега сдвинутого вправо.
1 1 0 Не используется.
1 1 1 Ячейка содержит элемент пробега(не первый), сдвинутого относительно канонического слота. Ячейка является канонической, для существующего пробега сдвинутого вправо.

Поиск

Пусть мы ищем ключ [math]K[/math]. Смотрим в его каноническую ячейку [math]H_q[/math]. Если бит занятости не единица, то элемент точно не содержится в множестве. Если бит занятости единица, то нам нужно найти пробег для [math]H_q[/math]. Так как начало нужного пробега может быть сдвинуто, найдем начало кластера. Идем влево от ячейки [math]H_q[/math] и ищем первую с битом сдвига равным нулю, эта ячейка и будет началом кластера. Пока мы идем влево от [math]H_q[/math] будем поддерживать счетчик, который бедет показывать сколько пробегов нам нужно будет пропустить от начала кластера. Каждая ячейка с битом занятости равным единице увеличивает счетчик на [math]1[/math]. После того как мы нашли начало кластера, пойдем от него влево, каждая ячейка с битом продолжения равным нулю говорит о завершении пробега, когда счетчик станет равным нулю мы найдем нужный нам пробег для [math]H_q[/math]. Если в этом пробеге содержится [math]H_r[/math], то [math]K[/math] ,вероятно, содержится в множестве, иначе [math]K[/math] точно не содержится в множестве.

Вставка

Аналогично с поиском: найдем позицию для [math]H_r[/math], сдвигаем на одну позицию влево все эллементы кластера, начиная с выбранного, обновляем дополнительные биты.

  • Сдвиг не влияет на бит занятости. Выставляем бит занятости в ячейке [math]H_q[/math] в единицу.
  • Если мы вставляем [math]H_r[/math] в начало пробега, следовательно предыдущий элемент пробега стал вторым, у него нужно выставить бит продолжения.
  • Мы выставляем бит сдвига в единицу для каждой ячейки, что мы сдвинули.

Преимущества

  • Последовательное расположение данных. Можно загружать только [math]1[/math] кластер, уменьшая количество кеш промахов.
  • Простое увеличение или уменьшение хеш-таблицы, достаточно перенести один бит из остатка в частное или наоборот.
  • Простое слияние двух фильтров.

См. также

Примечания

  1. Bender, Michael A.; Farach-Colton, Martin; Johnson, Rob; Kuszmaul, Bradley C.; Medjedovic, Dzejla; Montes, Pablo; Shetty, Pradeep; Spillane, Richard P.; Zadok, Erez (June 2011)."Don't thrash: how to cache your hash on flash" (PDF)
  2. Knuth, Donald (1973). The Art of Computer Programming:Searching and Sorting, volume 3. Section 6.4, exercise 13: Addison Wesley

Источники