Несовпадение класса языков, распознаваемых ДМП автоматами и произвольными МП автоматами — различия между версиями
AReunov (обсуждение | вклад) |
AReunov (обсуждение | вклад) |
||
Строка 3: | Строка 3: | ||
{{Лемма | {{Лемма | ||
|statement=Язык <tex>L' = \left\{0^{n}1^{n}2^{n}\right\} \cup \left\{0^n1^n\right\} \cup \left\{0^n1^{2n}\right\}</tex> не является контекстно-свободным. | |statement=Язык <tex>L' = \left\{0^{n}1^{n}2^{n}\right\} \cup \left\{0^n1^n\right\} \cup \left\{0^n1^{2n}\right\}</tex> не является контекстно-свободным. | ||
− | |proof=Для фиксированного <tex>n</tex> рассмотрим слово <tex>\omega=0^n 1^n 2^n</tex>. Пусть <tex>\omega</tex> разбили на <tex>u, v, x, y, z</tex> произвольным образом. Так как <tex>|vxy|\leqslant n</tex>, то в слове не содержится либо ни одного символа <tex>0</tex>, либо ни одного символа <tex>2</tex>. Для любого такого разбиения выбираем <tex>k=2</tex> и получаем, что количество символов <tex>1</tex> изменилось, а количество либо <tex>0</tex>, либо <tex>2</tex> осталось тем же. Очевидно, что такое слово не принадлежит рассмотренному языку. Значит, язык <tex>L'</tex> не является контекстно-свободным по лемме о разрастании для КС-грамматик. | + | |proof=Для доказательства леммы воспользуемся [[Лемма о разрастании для КС-грамматик | леммой о накачке для КС-грамматик]]. Для фиксированного <tex>n</tex> рассмотрим слово <tex>\omega=0^n 1^n 2^n</tex>. Пусть <tex>\omega</tex> разбили на <tex>u, v, x, y, z</tex> произвольным образом. Так как <tex>|vxy|\leqslant n</tex>, то в слове не содержится либо ни одного символа <tex>0</tex>, либо ни одного символа <tex>2</tex>. Для любого такого разбиения выбираем <tex>k=2</tex> и получаем, что количество символов <tex>1</tex> изменилось, а количество либо <tex>0</tex>, либо <tex>2</tex> осталось тем же. Очевидно, что такое слово не принадлежит рассмотренному языку. Значит, язык <tex>L'</tex> не является контекстно-свободным по лемме о разрастании для КС-грамматик. |
}} | }} | ||
{{Теорема | {{Теорема | ||
Строка 11: | Строка 11: | ||
<br> | <br> | ||
− | Так как множества языков, распознаваемых ДМП-автомат с допуском по допускающему состоянию и ДМП-автомат с допуском по пустому стеку совпадают(см. [[Детерминированные автоматы с магазинной памятью, допуск по пустому стеку | соответствующую теорему]]), будем рассматривать в доказательстве ДМП-автомат с допуском по допускающему состоянию. | + | Так как множества языков, распознаваемых ДМП-автомат с допуском по допускающему состоянию и ДМП-автомат с допуском по пустому стеку совпадают (см. [[Детерминированные автоматы с магазинной памятью, допуск по пустому стеку | соответствующую теорему]]), будем рассматривать в доказательстве ДМП-автомат с допуском по допускающему состоянию. |
<br> | <br> |
Версия 20:50, 14 января 2016
В отличие от конечных автоматов, для МП-автоматов недетерминизм является существенным. ДМП-автоматы распознают не все языки, распознаваемые МП-автоматами или КС-грамматиками.
Лемма: |
Язык не является контекстно-свободным. |
Доказательство: |
Для доказательства леммы воспользуемся леммой о накачке для КС-грамматик. Для фиксированного рассмотрим слово . Пусть разбили на произвольным образом. Так как , то в слове не содержится либо ни одного символа , либо ни одного символа . Для любого такого разбиения выбираем и получаем, что количество символов изменилось, а количество либо , либо осталось тем же. Очевидно, что такое слово не принадлежит рассмотренному языку. Значит, язык не является контекстно-свободным по лемме о разрастании для КС-грамматик. |
Теорема: |
Классы языков, задаваемых МП-автоматами и ДМП-автоматами с допуском по допускающему состоянию не совпадают. |
Доказательство: |
Рассмотрим язык . Очевидно, что язык является контекстно-свободным.
|
См. также
- Автоматы с магазинной памятью
- Допуск по пустому стеку и по допускающему состоянию
- Детерминированные автоматы с магазинной памятью
Источники информации
- Хопкрофт Д., Мотвани Р., Ульман Д. Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — М.:Издательский дом «Вильямс», 2002. — С. 61.— ISBN 5-8459-0261-4
- Википедия — Автомат с магазинной памятью