Детерминированные автоматы с магазинной памятью, допуск по пустому стеку — различия между версиями
Zernov (обсуждение | вклад) (→Источники) |
Zernov (обсуждение | вклад) |
||
Строка 12: | Строка 12: | ||
|proof= | |proof= | ||
<tex>\Rightarrow</tex><br> | <tex>\Rightarrow</tex><br> | ||
− | Допустим, что <tex>L</tex> не беспрефиксный. Тогда <tex>\exists \omega_1, \omega_2 \in L : \omega_2 = \omega_1 \alpha</tex>. Попробуем допустить слово <tex>\omega_2</tex>. Тогда автомат остановится сразу после префикса <tex>\omega_1</tex>, т.к. <tex>\omega_1 \in L</tex>. Стек будет пустой, однако до конца слова <tex>\omega_2</tex> мы не дойдем, поэтому оно не допустится, хотя содержится в <tex>L</tex>. Получили противоречие, значит <tex>L</tex> {{---}} беспрефиксный. | + | |
+ | :Допустим, что <tex>L</tex> не беспрефиксный. Тогда <tex>\exists \omega_1, \omega_2 \in L : \omega_2 = \omega_1 \alpha</tex>. Попробуем допустить слово <tex>\omega_2</tex>. Тогда автомат остановится сразу после префикса <tex>\omega_1</tex>, т.к. <tex>\omega_1 \in L</tex>. Стек будет пустой, однако до конца слова <tex>\omega_2</tex> мы не дойдем, поэтому оно не допустится, хотя содержится в <tex>L</tex>. Получили противоречие, значит <tex>L</tex> {{---}} беспрефиксный. | ||
+ | |||
Построим по заданному ДМП-автомату с допуском по пустому стеку ДМП с допуском по допускающему состоянию.<br> <br> | Построим по заданному ДМП-автомату с допуском по пустому стеку ДМП с допуском по допускающему состоянию.<br> <br> | ||
[[Файл:ДМП1.png]]<br> | [[Файл:ДМП1.png]]<br> | ||
<tex>\Leftarrow</tex><br> | <tex>\Leftarrow</tex><br> | ||
− | Пусть задан ДМП-автомат с допуском по допускающему состоянию, язык <tex>L</tex> {{---}} беспрефиксный. Если автомат в какой-то момент пришел в допускающее состояние, то дальше идти смысла нет, т.к. тогда бы слово, допускаемое этим состоянием было бы префиксом некоторого другого слова. Значит можем удалить все переходы из допускающих состояний и добавить переходы в очистку стека.<br> | + | :Пусть задан ДМП-автомат с допуском по допускающему состоянию, язык <tex>L</tex> {{---}} беспрефиксный. Если автомат в какой-то момент пришел в допускающее состояние, то дальше идти смысла нет, т.к. тогда бы слово, допускаемое этим состоянием было бы префиксом некоторого другого слова. Значит можем удалить все переходы из допускающих состояний и добавить переходы в очистку стека.<br> |
[[Файл:ДМП2.png]] | [[Файл:ДМП2.png]] | ||
}} | }} | ||
− | ==Источники== | + | ==Источники информации== |
* ''Хопкрофт Д., Мотвани Р., Ульман Д.'' {{---}} '''Введение в теорию автоматов, языков и вычислений''', 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2008. : ISBN 978-5-8459-1347-0 (рус.) | * ''Хопкрофт Д., Мотвани Р., Ульман Д.'' {{---}} '''Введение в теорию автоматов, языков и вычислений''', 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2008. : ISBN 978-5-8459-1347-0 (рус.) | ||
Версия 00:21, 7 декабря 2016
Определение: |
Определим детерминированный автомат с магазинной памятью, допускающий по пустому стеку, как детерминированный автомат с магазинной памятью, у которого нет множества допускающих состояний. Автомат заканчивает свою работу как только стек становится пустым. |
Определим для него множество допускающих слов
, где — произвольное состояние.Определение: |
Язык называется беспрефиксным, если для любой пары слов из этого языка ни одно из этих слов не является префиксом другого. |
Источники информации
- Хопкрофт Д., Мотвани Р., Ульман Д. — Введение в теорию автоматов, языков и вычислений, 2-е изд. : Пер. с англ. — Москва, Издательский дом «Вильямс», 2008. : ISBN 978-5-8459-1347-0 (рус.)