Классы NP, coNP, Σ₁, Π₁ — различия между версиями
Novik (обсуждение | вклад) м |
м (poly => \mathit{poly}) |
||
Строка 2: | Строка 2: | ||
{{Определение | {{Определение | ||
|id=def1 | |id=def1 | ||
− | |definition=<tex>\mathrm{NP}=\!\!\bigcup\limits_{p(n) \in poly}\!\!\operatorname{NTIME}(p(n))</tex>. | + | |definition=<tex>\mathrm{NP}=\!\!\bigcup\limits_{p(n) \in \mathit{poly}}\!\!\operatorname{NTIME}(p(n))</tex>. |
}} | }} | ||
То есть <tex>\mathrm{NP}</tex> — это множество языков, разрешимых [[Недетерминированные вычисления|недетерминированной программой]] за полиномиальное время. | То есть <tex>\mathrm{NP}</tex> — это множество языков, разрешимых [[Недетерминированные вычисления|недетерминированной программой]] за полиномиальное время. | ||
Строка 10: | Строка 10: | ||
То есть <tex>\mathrm{coNP}</tex> — это множество языков, дополнение к которым лежит в <tex>\mathrm{NP}</tex>. | То есть <tex>\mathrm{coNP}</tex> — это множество языков, дополнение к которым лежит в <tex>\mathrm{NP}</tex>. | ||
{{Определение | {{Определение | ||
− | |definition=<tex>\mathrm{\Sigma_1}=\{L\bigm|\exists R(x,y)\in \tilde{\mathrm{P}}, p(n) \in poly : x\in L\Leftrightarrow\exists y : |y|\leqslant p(|x|), R(x,y)=1\}</tex>. | + | |definition=<tex>\mathrm{\Sigma_1}=\{L\bigm|\exists R(x,y)\in \tilde{\mathrm{P}}, p(n) \in \mathit{poly} : x\in L\Leftrightarrow\exists y : |y|\leqslant p(|x|), R(x,y)=1\}</tex>. |
}} | }} | ||
Нестрого говоря, <tex>\mathrm{\Sigma_1}</tex> — это множество языков, для которых существует работающая за полиномиальное время детерминированная программа-верификатор <tex>R(x,y)</tex>, а для каждого слова из языка (и только для слова из языка) можно предъявить сертификат полиномиальной длины, подтверждающий принадлежность слова языку и проверяемый верификатором. | Нестрого говоря, <tex>\mathrm{\Sigma_1}</tex> — это множество языков, для которых существует работающая за полиномиальное время детерминированная программа-верификатор <tex>R(x,y)</tex>, а для каждого слова из языка (и только для слова из языка) можно предъявить сертификат полиномиальной длины, подтверждающий принадлежность слова языку и проверяемый верификатором. | ||
{{Определение | {{Определение | ||
− | |definition=<tex>\mathrm{\Pi_1}=\{L\bigm|\exists R(x,y)\in \tilde{\mathrm{P}}, p(n) \in poly : x\in L\Leftrightarrow\forall y : |y|\leqslant p(|x|), R(x,y)=1\}</tex>. | + | |definition=<tex>\mathrm{\Pi_1}=\{L\bigm|\exists R(x,y)\in \tilde{\mathrm{P}}, p(n) \in \mathit{poly} : x\in L\Leftrightarrow\forall y : |y|\leqslant p(|x|), R(x,y)=1\}</tex>. |
}} | }} | ||
То есть <tex>\Pi_1</tex> — это множество языков, для которых существует работающая за полиномиальное время детерминированная программа-верификатор <tex>R(x,y)</tex>, а для каждого слова из языка (и только для слова из языка) нельзя предъявить сертификат длины, ограниченной неким полиномом, опровергающий принадлежность слова языку и проверяемый верификатором. Легко видеть, что <tex>\Pi_1</tex> — множество языков, дополнения к которым лежат в <tex>\Sigma_1</tex>. | То есть <tex>\Pi_1</tex> — это множество языков, для которых существует работающая за полиномиальное время детерминированная программа-верификатор <tex>R(x,y)</tex>, а для каждого слова из языка (и только для слова из языка) нельзя предъявить сертификат длины, ограниченной неким полиномом, опровергающий принадлежность слова языку и проверяемый верификатором. Легко видеть, что <tex>\Pi_1</tex> — множество языков, дополнения к которым лежат в <tex>\Sigma_1</tex>. |
Версия 00:47, 21 февраля 2017
Содержание
Определения, связь Σ₁ и NP
Определение: |
. |
То есть недетерминированной программой за полиномиальное время.
— это множество языков, разрешимыхОпределение: |
. |
То есть
— это множество языков, дополнение к которым лежит в .Определение: |
. |
Нестрого говоря,
— это множество языков, для которых существует работающая за полиномиальное время детерминированная программа-верификатор , а для каждого слова из языка (и только для слова из языка) можно предъявить сертификат полиномиальной длины, подтверждающий принадлежность слова языку и проверяемый верификатором.Определение: |
. |
То есть
— это множество языков, для которых существует работающая за полиномиальное время детерминированная программа-верификатор , а для каждого слова из языка (и только для слова из языка) нельзя предъявить сертификат длины, ограниченной неким полиномом, опровергающий принадлежность слова языку и проверяемый верификатором. Легко видеть, что — множество языков, дополнения к которым лежат в .Теорема: |
. |
Доказательство: |
.
return
.
|
Примечание: определение
часто называют также «определением на языке сертификатов», а , соответственно, «определением на языке сертификатов».Свойства
Теорема: |
Пусть . Тогда:
|
Доказательство: |
Пусть разрешает , а разрешает .
return and
return or
return and
do if not return false while return true
|
Примеры языков из NP
Язык палиндромов
Этот язык разрешается автоматом с магазинной памятью, то есть принадлежит
, а следовательно, и .Язык задачи о раскраске вершин графа в цветов
Переформулируем задачу в терминах принадлежности языку: пусть
вершины можно раскрасить в цветов .Этот язык разрешается следующей недетерминированной программой за полиномиальное относительно числа вершин и рёбер время:
for in if == return false return true
Язык гамильтоновых графов
Рассмотрим следующий язык:
содержит гамильтонов цикл . Он разрешается следующей программой, работающей за полиномиальное относительно числа вершин время:for in if return false for to if return false return true
Два последних языка также являются . По -полнымитеореме Ладнера, если , то существует язык из , не являющийся -полным.
Примеры языков из coNP
Язык графов, не являющихся гамильтоновыми
Этот язык принадлежит
, так как является дополнением к языку гамильтоновых графов, принадлежащему , как показано выше.TAUT
Язык булевых формул, являющихся тавтологиями. К этому языку тривиально сводится дополнение к
: если отрицание формулы невыполнимо, то она является тавтологией, и наоборот.Связь P и NP
Очевидно, что редкий ; было доказано, что -полный языкдоказательство должно быть нерелятивизующимся. Кроме того, были предприняты различные попытки найти полиномиальные решения для задач из :
, так как детерминированные программы можно рассматривать как недетерминированные, в которых не используется недетерминированный выбор. Вопрос о равенстве данных классов до сих пор остается открытым. Были осуществлены различные подходы к разрешению этой задачи: попытка найтиНекоторые задачи из
очень похожи на задачи из , при этом различие между задачами кажется совершенно незначительным:Принадлежит | -полная |
---|---|
Поиск самых коротких простых путей | Поиск самых длинных простых путей[3] |
Эйлеров цикл | Гамильтонов цикл |
2-CNF выполнимость | 3-CNF выполнимость |