Основная теорема арифметики — различия между версиями
Senya (обсуждение | вклад) м (→Собственно теорема) (Метки: правка с мобильного устройства, правка из мобильной версии) |
Senya (обсуждение | вклад) (Метки: правка с мобильного устройства, правка из мобильной версии) |
||
Строка 1: | Строка 1: | ||
− | + | ==Лемма Евклида== | |
− | |||
− | |||
{{Лемма | {{Лемма | ||
Строка 15: | Строка 13: | ||
}} | }} | ||
− | + | ==Основная теорема арифметики== | |
{{Теорема | {{Теорема |
Версия 10:38, 12 мая 2018
Лемма Евклида
Лемма: |
Если простое число делит без остатка произведение двух целых чисел , то делит или . |
Доказательство: |
Пусть делится на , но не делится на . Тогда и — взаимно простые, следовательно, найдутся такие целые числа и , что
Умножая обе части на , получаем |
Основная теорема арифметики
Теорема: |
Каждое натуральное число простые числа, причём такое представление единственно с точностью до порядка следования сомножителей. представляется в виде , где — |
Доказательство: |
Существование. Пусть Единственность. Пусть — наименьшее натуральное число, неразложимое в произведение простых чисел. Оно не может быть единицей по формулировке теоремы. Оно не может быть и простым, потому что любое простое число является произведением одного простого числа — себя. Если составное, то оно — произведение двух меньших натуральных чисел. Каждое из них можно разложить в произведение простых чисел, значит, тоже является произведением простых чисел. Противоречие. — наименьшее натуральное число, разложимое в произведение простых чисел двумя разными способами. Если оба разложения пустые — они одинаковы. В противном случае, пусть — любой из сомножителей в любом из двух разложений. Если входит и в другое разложение, мы можем сократить оба разложения на и получить два разных разложения числа , что невозможно. А если не входит в другое разложение, то одно из произведений делится на , а другое — не делится (как следствие из леммы Евклида, см. выше), что противоречит их равенству. |