Вершинная, рёберная связность, связь между ними и минимальной степенью вершины — различия между версиями
Vsklamm (обсуждение | вклад) м (→Источники информации) |
Vsklamm (обсуждение | вклад) (→Нахождение реберной связности) |
||
| Строка 35: | Строка 35: | ||
== Нахождение реберной связности == | == Нахождение реберной связности == | ||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
Для нахождения реберной связности нужно перебрать все пары вершин <tex>s</tex> и <tex>t</tex>, найти количество непересекающихся путей из <tex>s</tex> в <tex>t</tex> и выбрать минимум. | Для нахождения реберной связности нужно перебрать все пары вершин <tex>s</tex> и <tex>t</tex>, найти количество непересекающихся путей из <tex>s</tex> в <tex>t</tex> и выбрать минимум. | ||
| − | Пусть он равен <tex>l</tex>. По утверждению, граф является <tex>l</tex>-связным, причем такое <tex>l</tex> - максимально (ведь мы явно нашли количество путей). А значит, по определению, реберная связность равна <tex>l</tex>. | + | Пусть он равен <tex>l</tex>. По утверждению, граф является [[k-связность#def_2|<tex>l</tex>-связным]], причем такое <tex>l</tex> - максимально (ведь мы явно нашли количество путей). А значит, по определению, реберная связность равна <tex>l</tex>. |
Для нахождения количества непересекающихся путей из <tex>s</tex> в <tex>t</tex> воспользуемся алгоритмом нахождения максимального потока. Сопоставим каждому ребру пропускную способность, равную <tex>1</tex> и найдем максимальный [[Определение сети, потока #Определение потока |поток]]. | Для нахождения количества непересекающихся путей из <tex>s</tex> в <tex>t</tex> воспользуемся алгоритмом нахождения максимального потока. Сопоставим каждому ребру пропускную способность, равную <tex>1</tex> и найдем максимальный [[Определение сети, потока #Определение потока |поток]]. | ||
Версия 03:12, 21 октября 2018
| Определение: |
| Вершинной связностью графа называется наименьшее число вершин, удаление которых приводит к несвязному или тривиальному графу. |
| Определение: |
| Реберной связностью графа называется наименьшее количество ребер, удаление которых приводит к несвязному или тривиальному графу. |
Содержание
Связь между вершинной, реберной связностью и минимальной степенью вершины
Пускай минимальная степень вершины графа обозначается буквой . Тогда:
| Теорема: |
Для любого графа справедливо следующее неравенство: |
| Доказательство: |
|
| Теорема: |
Для любых натуральных чисел , таких что , существует граф , у которого и |
| Доказательство: |
|
Рассмотрим граф , являющийся объединением двух полных графов и , содержащих вершину. Отметим вершин, принадлежащих подграфу и вершин, принадлежащих подграфу . Добавим в граф ребер так, чтобы каждое ребро было инцидентно помеченной вершине, лежащей в подграфе и помеченной вершине, лежащей в подграфе , причем не осталось ни одной помеченной вершины, у которой не появилось хотя бы одно новое ребро, инцидентное ей. Тогда:
|
Нахождение реберной связности
Для нахождения реберной связности нужно перебрать все пары вершин и , найти количество непересекающихся путей из в и выбрать минимум. Пусть он равен . По утверждению, граф является -связным, причем такое - максимально (ведь мы явно нашли количество путей). А значит, по определению, реберная связность равна .
Для нахождения количества непересекающихся путей из в воспользуемся алгоритмом нахождения максимального потока. Сопоставим каждому ребру пропускную способность, равную и найдем максимальный поток. Он и будет равен количеству путей. Действительно, если провести декомпозицию потока, то получим набор реберно непересекающихся путей из в , по которым поток неотрицателен и равен (т.к. пропускная способность всех ребер равна ). А значит, если поток равен , то и количество путей равно .
Псевдокод алгоритма
function disjoint_paths_count(): int ans = INF for for flow = find_flow(s, t) // максимальный поток - количество путей из s в t ans = min(ans, flow) return ans
Оценка работы
Время работы равно . При использовании алгоритма Эдмондса-Карпа время равно или
Нахождение вершинной связности
Используя аналогичные утверждения и определения для вершинной связности придем к такому же алгоритму с тем отличием, что понадобится искать вершинно-непересекающиеся пути. Искать их можно тем же способом, если сопоставить каждой вершине пропускную способность, равную . Для этого воспользуемся известным трюком:
Разобьем каждую вершину графа на две вершины и . Все ребра, которые входили в будут входить в . Все ребра, которые выходили из будут выходить из . Так же добавим ребро с пропускной способностью .
После этого для нахождения количества вершинно непересекающихся путей в исходном графе будем искать количество реберно непересекающихся в новом графе.
Тем самым сведя задачу к нахождению реберной связности.