Изменения

Перейти к: навигация, поиск

Шифратор и дешифратор

6 байт добавлено, 15:40, 5 декабря 2018
Логическая схема
[[Файл:LogicSircuit1to2decoder.png|thumb|180px|Логическая схема дешифратора <tex>1</tex>-to-<tex>2</tex>]]
[[ФайлДавайте построим логическую схему дешифратора рекурсивным способом:LogicSircuit2to4decoderдопустим, что мы построили схему для <tex>n-1</tex> входа, теперь попробуем слить <tex>n</tex>-ый выход с предыдущими <tex>n-1</tex>.png|thumb|360px|Логическая Для <tex>n=1</tex> схема выглядит тривиальным образом: от входа <tex>s_0</tex> отходят два провода, один напрямую соединён с выходом <tex>z_0</tex>, другой соединён с гейтом <tex>NOT</tex>, а гейт <tex>NOT</tex> соединён с выходом <tex>z_1</tex>. Теперь допустим, что мы можем построить схему для <tex>n-1</tex> входов. Тогда <tex>n</tex>-ый вход соединим с дешифратором <tex>1</tex>-to-<tex>2</tex>, а первые <tex>n-1</tex> входы соединим с дешифратором <tex>(n-1)</tex>-to-<tex>(2^{n-1})</tex> и потом соединим каждый выход дешифратора <tex>(n-1)</tex>-to-<tex>(2^{n-1})</tex> с каждым выходом дешифратора <tex>1</tex>-to-<tex>42</tex> с помощью гейтов <tex>AND</tex>, потом соединим соответствующие гейты с выходами <tex>z_i</tex> таким образом, чтобы значение на входе <tex>z_i</tex> было равно <tex>1</tex> только в том случае, если число <tex>i</tex> кодируется входами <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{n-1}</tex>. Очевидно, что мы таким образом перебрали всевозможные комбинации значений на входах <tex>s_0</tex>, <tex>s_1</tex>]], <tex>\ldots</tex>, <tex>s_{n-1}</tex>, поэтому наша схема будет работать верно.
Давайте построим логическую схему дешифратора рекурсивным способом[[Файл: допустим, что мы построили схему для <tex>n-1</tex> входа, теперь попробуем слить <tex>n</tex>-ый выход с предыдущими <tex>n-1</tex>LogicSircuit2to4decoder. Для <tex>n=1</tex> png|thumb|360px|left|Логическая схема выглядит тривиальным образом: от входа <tex>s_0</tex> отходят два провода, один напрямую соединён с выходом <tex>z_0</tex>, другой соединён с гейтом <tex>NOT</tex>, а гейт <tex>NOT</tex> соединён с выходом <tex>z_1</tex>. Теперь допустим, что мы можем построить схему для <tex>n-1</tex> входов. Тогда <tex>n</tex>-ый вход соединим с дешифратором <tex>1</tex>-to-<tex>2</tex>, а первые <tex>n-1</tex> входы соединим с дешифратором <tex>(n-1)</tex>-to-<tex>(2^{n-1})</tex> и потом соединим каждый выход дешифратора <tex>(n-1)</tex>-to-<tex>(2^{n-1})</tex> с каждым выходом дешифратора <tex>1</tex>-to-<tex>2</tex> с помощью гейтов <tex>AND</tex>, потом соединим соответствующие гейты с выходами <tex>z_i</tex> таким образом, чтобы значение на входе <tex>z_i</tex> было равно <tex>1</tex> только в том случае, если число <tex>i</tex> кодируется входами <tex>s_0</tex>, <tex>s_1</tex>, <tex>\ldots</tex>, <tex>s_{n-1}</tex>. Очевидно, что мы таким образом перебрали всевозможные комбинации значений на входах <tex>s_0</tex>, <tex>s_14</tex>, <tex>\ldots</tex>, <tex>s_{n-1}</tex>, поэтому наша схема будет работать верно.]]
==См. также==
390
правок

Навигация