Теорема о гигантской компоненте. Поиск в ширину в случайном графе — различия между версиями
Cuciev (обсуждение | вклад) м (file renaming) |
Cuciev (обсуждение | вклад) м (image formatting) |
||
Строка 91: | Строка 91: | ||
Чтобы вычислить размер компоненты связности, пройдемся с помощью [[Обход в ширину|БФС]] по ней, стартуя из произвольной вершины и переходя к очередной неисследованной вершине, только если ребро между ними существует (данный факт необходимо установить независимо от других ребер, с вероятностью <tex>p = \frac{d}{n}</tex>). Если ребро существует, пометим следующую вершину как "открытую". Алгоритм закончит свою работу (обойдет всю компоненту связности), когда множество неисследованных "открытых" вершин станет пустым. | Чтобы вычислить размер компоненты связности, пройдемся с помощью [[Обход в ширину|БФС]] по ней, стартуя из произвольной вершины и переходя к очередной неисследованной вершине, только если ребро между ними существует (данный факт необходимо установить независимо от других ребер, с вероятностью <tex>p = \frac{d}{n}</tex>). Если ребро существует, пометим следующую вершину как "открытую". Алгоритм закончит свою работу (обойдет всю компоненту связности), когда множество неисследованных "открытых" вершин станет пустым. | ||
<br> | <br> | ||
− | [Файл: | + | [[Файл:Bfs_problem_on_random_graph.png|300px|center|Проблема БФС]] |
<br> | <br> | ||
На данном изображении представлены результаты работы БФС, начавшемся в вершине <tex>1</tex> на двух графах: в первом у всех ребер <tex>p = 1</tex>, во втором же факт существования ребра определялся по ходу работы алгоритма {{---}} ребра, отмеченные пунктиром, не существуют. Возникающая проблема состоит в том, что, к примеру, Проблема возникает, когда алгоритм просто не доходит до каких-то ребер, не выясняя, существуют они или нет: находясь в вершине <tex>2</tex>, алгоритм не делал запрос о ребре <tex>(2, 3)</tex>, так как у этому моменту вершина <tex>3</tex> уже была исследована. Ребра, которые потенциально могли быть не изученными, помечены на рисунке точечным пунктиром. | На данном изображении представлены результаты работы БФС, начавшемся в вершине <tex>1</tex> на двух графах: в первом у всех ребер <tex>p = 1</tex>, во втором же факт существования ребра определялся по ходу работы алгоритма {{---}} ребра, отмеченные пунктиром, не существуют. Возникающая проблема состоит в том, что, к примеру, Проблема возникает, когда алгоритм просто не доходит до каких-то ребер, не выясняя, существуют они или нет: находясь в вершине <tex>2</tex>, алгоритм не делал запрос о ребре <tex>(2, 3)</tex>, так как у этому моменту вершина <tex>3</tex> уже была исследована. Ребра, которые потенциально могли быть не изученными, помечены на рисунке точечным пунктиром. |
Версия 04:48, 22 мая 2020
Теорема о гигантской компоненте
Перед формулировкой основной теоремы данного раздела, дадим определение некоторых понятий, которые будут использованы в дальнейшем, а также приведем необходимые далее утверждения.
Определение: |
Простейший ветвящийся процесс. Пусть | — независимые пуассоновские величины с одним и тем же средним . Положим .
Представлять себе описанный только что процесс можно так. В начальный момент времени есть одна активная частица. Затем она делает
(можжет ыть достигнуто, так как величина равна нулю с положительной вероятностью) активных потомков и перестает быть активной. На следующем шаге все повторяется: какая-то частица (порядок роли не играет) порождает новых частиц, а сама перестает быть активной. И так далее. Данный процесс может как завершиться (частицы перестанут быть активными), так и продолжаться бесконечно.Теорема: |
Пусть . Тогда с вероятностью 1 процесс вырождается, т.е. . |
Теорема: |
Пусть . Пусть — единственное решение уравнения . Тогда процесс вырождается с вероятностью , т.е. . |
Определение: |
Ветвящийся процесс на случайном графе. Пусть | — независимые пуассоновские величины с одним и тем же средним . Положим .
Пусть дан граф
. Зафиксируем . Пометим ее как активную, а все остальные вершины — нейтральными. Выберем среди нейтральных вершин всех соседей вершины . После этого пометим вершину как неактивную , а смежных с ней — как активных, а все остальные вершины — нейтральными.Снова зафиксируем какую-нибудь активную вершину
, и повторим процесс. Не меняем статус остальных уже активных вершин.Продолжая этот ветвящийся процесс, мы в конце концов получим лишь неактивные (образующие компоненту, содержащую
) и нейтральные вершины.Обозначим число активных вершин в момент времени
через , число нейтральных вершин — через , а число соседей вершины, которую собираемся пометить как неактивную, — через . Тогда . Все введенные величины зависят от графа и от последовательности выбираемых вершин .Если
посчитать случайным, то при любом выборе вершин получатся случайные величины на пространстве .Теорема (о гигантской компоненте): |
Рассмотрим модель . Пусть .
Если Если же , то найдется такая константа , что а.п.н. размер каждой связной компоненты случайного графа не превосходит . , то найдется такая константа , что а.п.н. в случайном графе есть ровно одна компонента размера . Размер остальных компонент не превосходит . |
Доказательство: |
Приведем здесь идеи, изложенные А.М. Райгородским [1], основанные на доказательстве Р. Карпа [2]. Данное доказательство может быть, не настолько строгое, как приведенное в [3], однако отличается лаконичностью и наглядностью. Случай .Положим , где — константа, которую мы подберем позднее. Нам хочется доказать, что с большой вероятностью каждая из компонент случайного графа имеет размер . Но размер компоненты — это момент вырождения процесса на случайном графе. Значит, интересующее нас утверждение можно записать в следующем виде:
Поскольку , достаточно найти такое , при котором
Далее: центральной предельной теоремы) . с учетом асимптотики с учетомПоскольку , нижний предел интегрирования имеет порядок . Таким образом, весь интеграл не превосходит величины . Выберем таким, чтобы оказалось меньше, чем , и в случае теорема доказана.
В данном случае ветвящийся процесс на графе нужно «запускать» не один раз, а многократно. Только так удается доказать, что почти наверняка хотя бы в одном запуске возникнет гигантская компонента. Подробности можно найти в [3], мы же лишь поясним, откуда в текущей ситуации появляется константа предыдущей теоремы и почему она совпадает с одноименной константой из той же теоремы. из формулировкиЧтобы доказать, что есть гигантская компонента, необходимо, чтобы ветвящийся процесс на графе не вырождался даже при . Иными словами, необходимо, чтобы:Так как по условию центральную предельную теорему к Интегрирование пойдет от минус бесконечности до . , то при выполнено: ПрименимЕсли , то мы получим искомое стремление вероятности к нулю.Если Таким образом, критическое значение , то вероятность, напротив, будет стрметиться к единице. , вплоть до которого есть именно стремление к нулю, — это решение уравнения или, что равносильно, . А это и есть уравнение из предыдущей теоремы, если заменить на . |
Обход случайного графа
Воспользуемся полученными в предыдущем разделе знаниями.
Рассмотрим граф . Проанализируем его структуру по мере роста . При , граф состоит только из изолированных вершин. С ростом в нем появляются ребра, компоненты связности получающегося леса объединяются. При достижении граф а.п.н. является лесом. Когда , появляются циклы. При , размер каждой из компонент связности . Число комонент связности, содержащих только один цикл — константа, зависящая от . Таким образом, граф состоит из леса и компонент, содержащих единственный цикл без компонент размера .
Когда начинает образовываться гигантская компонента. Этот процесс происходит в два этапа: при возникают компоненты из вершин, а.п.н. являющиеся деревьями. При , появляется гигантская компонента размером, пропорциональным количеству вершин во всем графе.
После превышения значения , все неизолированные вершины оказываются в гигантской компоненте. При достижении , в графе остаются только изолированные плюс гигантская компонента. Когда становится равной граф становится связным. При верно: в существует клика размером . Озвученные выше факты будут доказаны далее.
Чтобы вычислить размер компоненты связности, пройдемся с помощью БФС по ней, стартуя из произвольной вершины и переходя к очередной неисследованной вершине, только если ребро между ними существует (данный факт необходимо установить независимо от других ребер, с вероятностью ). Если ребро существует, пометим следующую вершину как "открытую". Алгоритм закончит свою работу (обойдет всю компоненту связности), когда множество неисследованных "открытых" вершин станет пустым.
На данном изображении представлены результаты работы БФС, начавшемся в вершине на двух графах: в первом у всех ребер , во втором же факт существования ребра определялся по ходу работы алгоритма — ребра, отмеченные пунктиром, не существуют. Возникающая проблема состоит в том, что, к примеру, Проблема возникает, когда алгоритм просто не доходит до каких-то ребер, не выясняя, существуют они или нет: находясь в вершине , алгоритм не делал запрос о ребре , так как у этому моменту вершина уже была исследована. Ребра, которые потенциально могли быть не изученными, помечены на рисунке точечным пунктиром.
Литература
- 1. Введение в математическое моделирование транспортных потоков: Учебное пособие/Издание 2-е, испр. и доп. А. В. Гасников и др. Под ред. А. В. Гасникова.— М.: МЦНМО, 2013 — C.330-339 — ISBN 978-5-4439-0040-7
- 2. Karp R. The transitive closure of a random digraph//Random structures and algorithms. 1990. V. 1. P. 73–94.
- 3. Алон Н., Спенсер Дж. Вероятностный метод. М.: Бином. Лаборатория знаний, 2007.
- 4. Blum A. Random Graphs // CS 598 Topics in Algorithms (UIUC), 2015. URL: https://www.cs.cmu.edu/~avrim/598/chap4only.pdf