Гильбертовы пространства — различия между версиями
Megabyte (обсуждение | вклад) м |
|||
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
{{Определение | {{Определение | ||
|definition= | |definition= | ||
Версия 06:52, 1 сентября 2022
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
| Определение: |
Скалярным произведением в действительном линейном пространстве называется функция , удовлетворяющая следующим аксиомам:
|
Пример:
- , то есть множество бесконечных числовых последовательностей, сумма квадратов которых сходится (). , сходимость этого ряда и аксиомы скалярного произведения доказаны тут.
В УП выполняется неравенство Шварца :
УП — частный случай нормированных пространств: можно ввести норму как , неравенство Шварца используется для доказательства того, что третья аксиома нормы выполняется.
Для нормы, порожденной скалярным произведением выполняется равенство параллелограмма: .
| Определение: |
| Гильбертовым пространством называют Банахово пространство, в котором норма порождена скалярным произведением. |
| Теорема: |
Пусть — выпуклое замкнутое множество в , тогда . называется элементом наилучшего приближения |
| Доказательство: |
| Наилучшее приближение в линейных нормированных пространствах |
| Определение: |
| Говорят, что два элемента гильбертова пространства перпендикулярны (), если |
| Определение: |
| Пусть — подпространство в , тогда ортогональным дополнением называется . |
| Теорема: |
Пусть — подпространство в , — его ортогональное дополнение. Тогда для любого существует единственное представление , где и . |
| Доказательство: |
|
Доказательство из [1] Положим , и для каждого найдём такой, что . По равенству параллелограмма, . Так как , то или . Тогда получаем, что . Но , и потому , то есть, последовательность — фундаментальная. Вследствие полноты , существует , а так как множество замкнуто (по определению подпространства), то . При этом и из следует, что . Но так как знак «меньше» невозможен, то . Теперь положим и покажем, что , то есть, . Возьмём . При любом имеем , так что , что можно, воспользовавшись , переписать в форме: . В частности, при получаем отсюда: , то есть, , что может быть только лишь в случае . Итак, возможность представления в форме и соотношение установлены. Докажем единственность такого представления. В самом деле, если (,), то сопоставив это с , получим . Поскольку , , то , откуда получаем . |
| Лемма (Рисc, о почти перпендикуляре): |
Пусть — НП, а — собственное (то есть не совпадающее с ) подпространство , тогда (где ) |
| Доказательство: |
|
Если — строго подмножество , то существует .
Пусть , тогда , то есть . — замкнутое, следовательно, , то есть получили противоречие и . , тогда , . Рассмотрим . по линейности лежит в так как оно замкнуто, тогда числитель будет больше , а знаменатель — меньше , то есть дробь будет больше . Таким образом, для любого из подобрали из , что не меньше , а тогда и будет не меньше по свойствам инфимума. |
Смысл данной леммы состоит в том, что в произвольном нормированном пространстве для сколь угодно малого и произвольного подпространства найдется элемент, который будет к нему перпендикулярен с точностью до .
| Теорема (некомпактность шара в бесконечномерном пространстве): |
Если - бесконечномерное НП, то единичный шар в нем не компактен. |
| Доказательство: |
|
Возьмем , — собственное подпространство , применим лемму Рисса, возьмем , существует , заметим, что окажется в . , опять применим лемму Рисса, существует , будет в . Продолжаем так же для . Процесс никогда не завершится, так как — бесконечномерное и не может быть линейной оболочкой конечного числа векторов. Таким образом построили бесконечную систему точек в , из которой нельзя выделить сходящуюся подпоследовательность, так как , следовательно, не компактно. |
В Гильбертовых пространствах важно понятие ортонормированной системы точек: .
Рассмотрим для точки абстрактный ряд Фурье , называют абстрактными коэффициентами Фурье.
| Теорема: |
. |
| Доказательство: |
| Доказательство есть здесь: L_2-теория рядов Фурье. |
| Теорема (Бессель, неравенство Бесселя): |
| Доказательство: |
|
Для некоторого набора коэффициентов рассмотрим скалярное произведение:
. Теперь, пусть , имеем , устремив к бесконечности, получим требуемое. |
Интересно рассмотреть, когда для всех неравенство превращается в равенство.
| Теорема (равенство Парсеваля): |
тогда и только тогда, когда ортонормированная система точек, по которым строятся коэффициенты Фурье, полная или замкнутая. |
| Доказательство: |
| Это доказательство (правда, по кускам) тоже есть здесь: L_2-теория рядов Фурье. |
| Теорема (Рисс-Фишер): |
Пусть - ортонормированная система в гильбертовом пространстве , . Тогда и выполняется равенство Парсеваля: |
| Доказательство: |
| И это доказательство тоже здесь есть: Теорема Рисса-Фишера. |
Можно задаться вопросом: какое топологическое свойство характеризует существование ортонормированного базиса?
| Теорема: |
Пусть — сепарабельное. Тогда в существует ортнормированный базис. |
| Доказательство: |
|
— счетное всюду плотное. , следовательно, надо превратить в ОНС, чтобы линейная оболочка совпала. ОНС строится процедурой Грама-Шмидта. |