Алгоритм Хьюи — различия между версиями
(→Обоснование корректности) |
|||
Строка 1: | Строка 1: | ||
+ | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
+ | |+ | ||
+ | |-align="center" | ||
+ | |'''НЕТ ВОЙНЕ''' | ||
+ | |-style="font-size: 16px;" | ||
+ | | | ||
+ | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
+ | |||
+ | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
+ | |||
+ | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
+ | |||
+ | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
+ | |||
+ | ''Антивоенный комитет России'' | ||
+ | |-style="font-size: 16px;" | ||
+ | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
+ | |-style="font-size: 16px;" | ||
+ | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
+ | |} | ||
+ | |||
{{Задача | {{Задача | ||
|definition=Дано [[Основные определения теории графов#oriented_grath|ориентированное]] [[Дерево, эквивалентные определения#tree|дерево]], вершины которого раскрашены в цвета. Найти <tex>dc:V\rightarrow \{1\ldots k\}</tex>, где <tex>dc(u) -</tex> число различных цветов в поддереве с корнем в вершине <tex>u</tex>. Время работы: <tex>O(V)</tex>}} | |definition=Дано [[Основные определения теории графов#oriented_grath|ориентированное]] [[Дерево, эквивалентные определения#tree|дерево]], вершины которого раскрашены в цвета. Найти <tex>dc:V\rightarrow \{1\ldots k\}</tex>, где <tex>dc(u) -</tex> число различных цветов в поддереве с корнем в вершине <tex>u</tex>. Время работы: <tex>O(V)</tex>}} |
Версия 07:07, 1 сентября 2022
НЕТ ВОЙНЕ |
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Задача: |
Дано ориентированное дерево, вершины которого раскрашены в цвета. Найти , где число различных цветов в поддереве с корнем в вершине . Время работы: |
Содержание
Простое решение
Ответ на задачу можно получить достаточно просто с помощью битовых масок. Для начала в каждую вершину поместим битовую маску с цветом данной вершины. Запустим обход в глубину и на выходе из каждой вершины будем записывать в неё результат побитового масок её детей и её самой. Таким образом в каждой вершине будет храниться битовая маска с цветами, лежащими в данном поддереве. Общая сложность алгоритма будет , где количество цветов. Если количество цветов меньше размера машинного слова, то сложность составит .
Алгоритм решения
Будем в каждой вершине дерева хранить по числу, так, чтобы для каждого поддерева ответом была сумма всех значений в вершинах в данном поддереве. Для начала каждой вершине в качестве значения присвоим
. Теперь, если бы все вершины имели различные цвета, надо было бы пройти снизу вверх по дереву и просуммировать для каждой вершины числа, записанные в её детях. Но некоторые вершины будут иметь одинаковые цвета, и это надо как-то учитывать.Для этого запустим обход в глубину. Также будем хранить для каждого цвета последнюю посещенную вершину данного цвета в массиве наименьшего общего предка данной вершины и последней вершины с таким цветом и вычитаем из их предка , присваиваем . Теперь при выходе из вершины можно просуммировать числа в ее детях и получить ответ для данной вершины, так как для нее все дети уже подсчитаны.
. Теперь, заходя в -ую вершину с цветом , смотрим: если вершина с таким цветом еще не встречалась, то просто присваиваем , иначе, если вершина с данным цветом уже встречалась, то находимТаким образом, алгоритм запускает один обход в глубину, на каждой итерации которого ищет наименьшего общего предка. Если искать наименьшего общего предка за алгоритмом Фарака-Колтона и Бендера, то сложность работы алгоритма будет .
, к примеруПример
Псевдокод
int col[MAX_COL], used[MAX_N], sum[MAX_N] func dfs(Node v): used[v] = true forv.children if !used[u] dfs(u) sum[v] += sum[u] if last[col[v]] != -1 sum[lca(v, last[col[v]])]-- last[col[v]] = v func hugh(int n, int k, Node root): for used[v] = false sum[v] = 1 for i = 1 to k last[i] = -1 dfs(root)
Обоснование корректности
Отсортируем вершины по времени входа. Рассмотрим вершину
, в поддереве которой вершин одного цвета. Так как мы обходим вершины в порядке времени входа, эти вершин мы обойдем последовательно. Их наименьший общий предок будет лежать в данном поддереве. Следовательно мы вычтем раз единицу из вершины . Для любых других двух вершин их наименьший общий предок не будет лежать в данном поддереве. Следовательно для каждого поддерева учтется по одной вершине каждого цвета, существующего в данном поддереве.