Теорема Радо-Эдмондса (жадный алгоритм) — различия между версиями
(→Графовый матроид) |
|||
| Строка 1: | Строка 1: | ||
| + | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;" | ||
| + | |+ | ||
| + | |-align="center" | ||
| + | |'''НЕТ ВОЙНЕ''' | ||
| + | |-style="font-size: 16px;" | ||
| + | | | ||
| + | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. | ||
| + | |||
| + | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. | ||
| + | |||
| + | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. | ||
| + | |||
| + | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. | ||
| + | |||
| + | ''Антивоенный комитет России'' | ||
| + | |-style="font-size: 16px;" | ||
| + | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. | ||
| + | |-style="font-size: 16px;" | ||
| + | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки]. | ||
| + | |} | ||
| + | |||
== Теорема Радо-Эдмондса == | == Теорема Радо-Эдмондса == | ||
{{Теорема | {{Теорема | ||
Версия 07:15, 1 сентября 2022
| НЕТ ВОЙНЕ |
|
24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян. Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием. Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей. Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить. Антивоенный комитет России |
| Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению. |
| meduza.io, Популярная политика, Новая газета, zona.media, Майкл Наки. |
Содержание
Теорема Радо-Эдмондса
| Теорема (Радо-Эдмондса): |
На носителе матроида задана весовая функция . Пусть — множество минимального веса среди независимых подмножеств мощности . Возьмем , , — минимальна.
Тогда — множество минимального веса среди независимых подмножеств мощности . |
| Доказательство: |
|
Рассмотрим — множество минимального веса среди независимых подмножеств мощности . Из определения матроида: . Тогда верны два неравенства:
Заметим, что величина с двух сторон ограничивает величину . Значит, эти величины равны: . Следовательно, . Таким образом получаем, что если объединить множество с — минимальным из таких, что , — то получим множество минимального веса среди независимых подмножеств мощности . |
Жадный алгоритм поиска базы минимального веса
| Теорема (жадный алгоритм поиска базы минимального веса): |
Пусть на носителе матроида задана весовая функция . Для любого выполнено: . Тогда база минимального веса матроида ищется жадно. |
| Доказательство: |
|
Пусть ¸ а — время, за которое выполняется проверка множества на независимость. Псевдокод алгоритма: sort(X) // сортируем элементы по возрастанию веса for to if Рассмотрим шаг алгоритма, на котором мы пытаемся добавить элемент . Заметим, что если при его добавлении сохраняется независимость множества , то это элемент минимального веса не из . В самом деле, пусть — элемент минимального веса не из , который можно добавить к с сохранением его независимости, тогда . Но тогда он уже был бы добавлен на -ом шаге алгоритма. Понятно, что все базы имеют одинаковую мощность (иначе в меньшую можно было бы добавить элемент из большей по аксиоме матроидов, что противоречит определению базы). По теореме Радо-Эдмондса множество минимального веса, имеющее мощность базы, (то есть база минимального веса) ищется последовательным добавлением в изначально пустое множество элементов минимального веса из так, чтобы после каждого добавления множество оставалось независимым. Алгоритм работает за . На сортировку элементов из по возрастанию весов уходит . После чего, построение базы выполняется шагов цикла, каждый из которых работает времени. Однако, если считать, что проверка множества на независимость происходит за , асимптотика алгоритма будет |
Примеры
Графовый матроид
Примером задачи, которая решается с помощью жадного алгоритма, является поиск остовного дерева. Остовное дерево — это база в графовом матроиде. Данная задача решается с помощью алгоритма Краскала. Код данного алгоритма совпадает с псевдокодом алгоритма поиска базы минимального веса, который был приведен выше.
Матроид паросочетаний
Типичной задачей из этого класса, является поиск наибольшего паросочетания в двудольном графе. Здесь мы имеем дело с трансверсальным матроидом. Решается эта задача с помощью алгоритма Куна.
Матричный матроид
Рассмотрим задачу о нахождении максимального количества линейно независимых строк в матрице. Возьмем матрицу с действительными кэффициентами . Пусть — множество её строк, — семейство множеств линейно независимых строк. Тогда — матричный матроид. Данная задача, как и задача о решении системы линейных алгебраических уравнений, решается с помощью метода Гаусса[1]