|
|
Строка 1: |
Строка 1: |
− | {| class="wikitable" align="center" style="color: red; background-color: black; font-size: 56px; width: 800px;"
| |
− | |+
| |
− | |-align="center"
| |
− | |'''НЕТ ВОЙНЕ'''
| |
− | |-style="font-size: 16px;"
| |
− | |
| |
− | 24 февраля 2022 года российское руководство во главе с Владимиром Путиным развязало агрессивную войну против Украины. В глазах всего мира это военное преступление совершено от лица всей страны, всех россиян.
| |
− |
| |
− | Будучи гражданами Российской Федерации, мы против своей воли оказались ответственными за нарушение международного права, военное вторжение и массовую гибель людей. Чудовищность совершенного преступления не оставляет возможности промолчать или ограничиться пассивным несогласием.
| |
− |
| |
− | Мы убеждены в абсолютной ценности человеческой жизни, в незыблемости прав и свобод личности. Режим Путина — угроза этим ценностям. Наша задача — обьединить все силы для сопротивления ей.
| |
− |
| |
− | Эту войну начали не россияне, а обезумевший диктатор. И наш гражданский долг — сделать всё, чтобы её остановить.
| |
− |
| |
− | ''Антивоенный комитет России''
| |
− | |-style="font-size: 16px;"
| |
− | |Распространяйте правду о текущих событиях, оберегайте от пропаганды своих друзей и близких. Изменение общественного восприятия войны - ключ к её завершению.
| |
− | |-style="font-size: 16px;"
| |
− | |[https://meduza.io/ meduza.io], [https://www.youtube.com/c/popularpolitics/videos Популярная политика], [https://novayagazeta.ru/ Новая газета], [https://zona.media/ zona.media], [https://www.youtube.com/c/MackNack/videos Майкл Наки].
| |
− | |}
| |
− |
| |
| [[Категория: В разработке]] | | [[Категория: В разработке]] |
| | | |
Содержание
- 1 1. Исчисление высказываний, общие определения. Таблицы истинности. Общезначимость.
- 2 2. Доказуемость. Аксиомы исчисления высказываний. Корректность исчисления высказываний.
- 3 3. Вывод из допущений. Теорема о дедукции.
- 4 4. Теорема о полноте исчисления высказываний.
- 5 5. Исчисление предикатов. Общезначимость и выводимость.
- 6 6. Теорема о дедукции в исчислении предикатов. Корректность и полнота исчисления предикатов.
- 7 7. Натуральный вывод. Секвенциальное исчисление предикатов. Устранение сечений.
- 8 8. Интуиционизм. Интуиционистское исчисление высказываний. Модели Крипке.
- 9 9. Теории первого порядка, примеры. Структуры и модели.
- 10 10. Аксиоматика Пеано. Формальная арифметика.
- 11 11. Рекурсивные функции и отношения. Реализация операций сложения, умножения, ограниченного вычитания.
- 12 12. Выразимость отношений и преставимость функций в формальной арифметике. Представимость примитивов Z, N, U и S.
- 13 13. Бета-функция Геделя. Представимость рекурсивных функций в формальной арифметике.
- 14 14. Геделева нумерация. Выводимость и рекурсивные функции.
- 15 15. Непротиворечивость и омега-непротиворечивость. Первая теорема Геделя о неполноте арифметики.
- 16 16. Первая теорема Геделя в форме Россера. Вторая теорема Геделя о неполноте арифметики.
- 17 17. Теория множеств. Парадоксы. Аксиоматика Цермело-Френкеля (равенство множеств, конструктивные аксиомы)
- 18 18. Аксиоматика Цермело-Френкеля (аксиомы бесконечности, выбора, подстановки, фундирования).
- 19 19. Ординальные и кардинальные числа, мощность множества.
1. Исчисление высказываний, общие определения. Таблицы истинности. Общезначимость.
Определение: |
Одним из базовых понятий логики высказываний является пропозициональная переменная — переменная, значением которой может быть логическое высказывание |
Определение: |
Языком исчисления высказываний мы назовем язык [math]L[/math], порождаемый следующей грамматикой со стартовым нетерминалом <выражение>:
- <выражение> ::= <импликация>
- <импликация> ::= <дизъюнкция> [math]|[/math] <дизъюнкция> [math]\rightarrow[/math] <импликация>
- <дизъюнкция> ::= <конъюнкция> [math]|[/math] <дизъюнкция> [math]\vee[/math] <конъюнкция>
- <конъюнкция> ::= <терм> [math]|[/math] <конъюнкция> [math]\&[/math] <терм>
- <терм> ::= <пропозициональная переменная> [math]|[/math] (<выражение>) [math]|[/math] [math]\neg[/math] <терм>
|
Определение: |
Высказывание - любая формула, порожденная данными грамматиками. |
TODO: таблицы истинности
Определение: |
Назовем выражение общезначимым, если его оценка истинна при любой оценке входящих в него пропозициональных переменных. Запись: [math]\models \alpha[/math]. |
2. Доказуемость. Аксиомы исчисления высказываний. Корректность исчисления высказываний.
TODO: Доказуемость
Определение: |
Формальная система - упорядоченная тройка [math]\langle L, A, R \rangle[/math], где [math]L[/math] --- некоторый язык, [math]A \subset L[/math] --- множество аксиом, а [math]R \subset (L^2 \cup L^3 \cup ...)[/math] - множество правил вывода |
Определение: |
Исчисление высказываний - формальная система, использующая в качестве языка язык исчисления высказываний, в качестве аксиом - следующие схемы выражений:
- [math](\phi) \rightarrow ((\psi) \rightarrow (\phi))[/math]
- [math]((\phi) \rightarrow (\psi)) \rightarrow ((\phi) \rightarrow (\psi) \rightarrow (\pi)) \rightarrow ((\phi) \rightarrow (\pi))[/math]
- [math](\phi) \rightarrow (\psi) \rightarrow (\phi) \& (\psi)[/math]
- [math](\phi) \& (\psi) \rightarrow (\phi)[/math]
- [math](\phi) \& (\psi) \rightarrow (\psi)[/math]
- [math](\phi) \rightarrow (\phi) \vee (\psi)[/math]
- [math](\psi) \rightarrow (\phi) \vee (\psi)[/math]
- [math]((\phi) \rightarrow (\pi)) \rightarrow ((\psi) \rightarrow (\pi)) \rightarrow ((\phi) \vee (\psi) \rightarrow (\pi))[/math]
- [math]((\phi) \rightarrow (\psi)) \rightarrow ((\phi) \rightarrow \neg (\psi)) \rightarrow \neg (\phi)[/math]
- [math]\neg \neg (\phi) \rightarrow (\phi)[/math]
, а правила вывода - все правила, порожденные согласованной заменой букв в [math]\langle{}\phi, (\phi) \rightarrow (\psi), \psi\rangle[/math]. |
TODO: Корректность исчисления высказываний
3. Вывод из допущений. Теорема о дедукции.
TODO: вывод из допущений
Будем обозначать буквами [math]\Gamma, \Delta, \Sigma[/math] списки формул (возможно, пустые).
Определение: |
Пусть [math]\Gamma[/math] - некоторые список высказываний, [math]\alpha[/math] - некоторое высказывание в исчислении [math]\langle L, A, R \rangle[/math]. Тогда будем говорить, что [math]\alpha[/math] выводится из [math]\Gamma[/math] (запись: [math]\Gamma \vdash \alpha[/math]), если существует доказательство [math]\alpha[/math] в исчислении [math]\langle L, A_1, R \rangle[/math], где [math]A_1[/math] - это [math]A[/math] с добавленными формулами из [math]\Gamma[/math]. Элементы [math]\Gamma[/math] называются допущениями, предположениями, или гипотезами. |
Теорема: |
Пусть справедливо [math]\Gamma \vdash \alpha \rightarrow \beta[/math]. Тогда справедливо [math]\Gamma \cup \{\alpha\} \vdash \beta[/math] |
Теорема (о дедукции): |
Пусть справедливо [math]\Gamma \cup \{\alpha\} \vdash \beta[/math]. Тогда справедливо [math]\Gamma \vdash \alpha \rightarrow \beta[/math]. |
4. Теорема о полноте исчисления высказываний.
5. Исчисление предикатов. Общезначимость и выводимость.
6. Теорема о дедукции в исчислении предикатов. Корректность и полнота исчисления предикатов.
7. Натуральный вывод. Секвенциальное исчисление предикатов. Устранение сечений.
8. Интуиционизм. Интуиционистское исчисление высказываний. Модели Крипке.
9. Теории первого порядка, примеры. Структуры и модели.
10. Аксиоматика Пеано. Формальная арифметика.
11. Рекурсивные функции и отношения. Реализация операций сложения, умножения, ограниченного вычитания.
12. Выразимость отношений и преставимость функций в формальной арифметике. Представимость примитивов Z, N, U и S.
13. Бета-функция Геделя. Представимость рекурсивных функций в формальной арифметике.
14. Геделева нумерация. Выводимость и рекурсивные функции.
15. Непротиворечивость и омега-непротиворечивость. Первая теорема Геделя о неполноте арифметики.
16. Первая теорема Геделя в форме Россера. Вторая теорема Геделя о неполноте арифметики.
17. Теория множеств. Парадоксы. Аксиоматика Цермело-Френкеля (равенство множеств, конструктивные аксиомы)
18. Аксиоматика Цермело-Френкеля (аксиомы бесконечности, выбора, подстановки, фундирования).
19. Ординальные и кардинальные числа, мощность множества.