Альтернатива Фредгольма — Шаудера — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 11 промежуточных версий 7 участников) | |||
Строка 1: | Строка 1: | ||
+ | [[Базис Шаудера |<<]][[Теория Гильберта-Шмидта|>>]] | ||
+ | |||
__TOC__ | __TOC__ | ||
Строка 29: | Строка 31: | ||
Пусть <tex>\overline V</tex> — единичный шар, <tex>Y = \operatorname{Ker}T</tex> — подпространство <tex>X</tex>. | Пусть <tex>\overline V</tex> — единичный шар, <tex>Y = \operatorname{Ker}T</tex> — подпространство <tex>X</tex>. | ||
− | Допустим, что <tex>\dim \operatorname{Ker}T = + \infty,~\overline W = \overline V \cap Y \ | + | Допустим, что <tex>\dim \operatorname{Ker}T = + \infty,~\overline W = \overline V \cap Y \implies \overline W = A \overline W</tex>. Так как <tex>A</tex> — компактный, <tex>\overline W</tex> — компакт в <tex>Y</tex>, но в бесконечномерном пространстве шар (<tex>\overline W</tex> будет шаром в подпространстве <tex>Y</tex>) не может быть компактом, получаем противоречие. Значит, если <tex>A</tex> — компактный, то <tex>\dim\operatorname{Ker}(I-A) < + \infty</tex>. |
}} | }} | ||
Строка 36: | Строка 38: | ||
Пусть <tex>T = I - A</tex>, <tex>A</tex> компактен, тогда <tex> R(T) </tex> замкнуто. | Пусть <tex>T = I - A</tex>, <tex>A</tex> компактен, тогда <tex> R(T) </tex> замкнуто. | ||
|proof= | |proof= | ||
− | [[Теорема Банаха об обратном операторе|Ранее]] мы доказали, что если уравнение <tex>Tx=y, y \in R(T)</tex> допускает априорную оценку (<tex>\exists \alpha~\ | + | [[Теорема Банаха об обратном операторе|Ранее]] мы доказали, что если уравнение <tex>Tx=y, y \in R(T)</tex> допускает априорную оценку (<tex>\exists \alpha~\exists x~Tx=y, \|x\| \leq a\|y\|</tex>), то <tex>R(T)</tex> замкнуто. Нужно доказать, что у <tex>T</tex> есть априорная оценка. |
− | Пусть <tex>y \in R(T) \ | + | Пусть <tex>y \in R(T) \implies Tx=y</tex>. Тогда <tex>\forall z \in \operatorname{Ker}T \implies T(x+z) = T(x) + T(z) = y + 0 = y</tex>. Значит, все решения уравнения <tex>Tx=y</tex> записываются в форме <tex>x=x_0+z</tex>, где <tex>x_0</tex> — одно из решений, <tex>z</tex> принадлежит <tex>\operatorname{Ker} T</tex>. Но <tex>\dim\operatorname{Ker}T < + \infty \implies \operatorname{Ker}~T = \mathcal{L} \{ e_1, \ldots e_n \} \implies x = x_0 + \sum\limits_{k=1}^n \alpha_k e_k, \alpha_k \in \mathbb{R}</tex>. |
Рассмотрим функцию от <tex>n</tex> переменных <tex>f(\alpha_1,\ldots,\alpha_n) = \|x_0 + \sum\limits_{k=1}^n \alpha_k e_k\| = \|x_0 - \sum\limits_{k=1}^n (-\alpha_k) e_k\|</tex>. Эта функция — не что иное, как наилучшее приближение <tex> x_0 </tex> элементами конечномерного <tex> \operatorname{Ker} T </tex>, теорема о наилучшем приближении гарантирует нам, что существуют <tex> \alpha^*_1, \alpha^*_2, \ldots, \alpha^*_n : f (\overline {\alpha}^*) = \inf\limits_{\alpha} f(\alpha)</tex>. | Рассмотрим функцию от <tex>n</tex> переменных <tex>f(\alpha_1,\ldots,\alpha_n) = \|x_0 + \sum\limits_{k=1}^n \alpha_k e_k\| = \|x_0 - \sum\limits_{k=1}^n (-\alpha_k) e_k\|</tex>. Эта функция — не что иное, как наилучшее приближение <tex> x_0 </tex> элементами конечномерного <tex> \operatorname{Ker} T </tex>, теорема о наилучшем приближении гарантирует нам, что существуют <tex> \alpha^*_1, \alpha^*_2, \ldots, \alpha^*_n : f (\overline {\alpha}^*) = \inf\limits_{\alpha} f(\alpha)</tex>. | ||
Строка 106: | Строка 108: | ||
|statement= | |statement= | ||
Пусть <tex> A </tex> — компактный оператор на банаховом <tex> X </tex>, <tex> T = I - A </tex>. | Пусть <tex> A </tex> — компактный оператор на банаховом <tex> X </tex>, <tex> T = I - A </tex>. | ||
− | Тогда <tex> R(T) = X \ | + | Тогда <tex> R(T) = X \iff \operatorname{Ker} T = \{0\} </tex>. |
|proof= | |proof= | ||
− | <tex> \ | + | <tex> \implies </tex>: |
Пусть существует <tex> x_1 \ne 0, x_1 \in \operatorname{Ker} T = N_1 </tex>. | Пусть существует <tex> x_1 \ne 0, x_1 \in \operatorname{Ker} T = N_1 </tex>. | ||
Строка 128: | Строка 130: | ||
<tex> R(T) </tex> — замкнутое множество, <tex> T^* = I - A^* </tex>, <tex> R(T^*) = (\operatorname{Ker} T)^{\perp} = (\{0\})^{\perp} = X^* </tex>. | <tex> R(T) </tex> — замкнутое множество, <tex> T^* = I - A^* </tex>, <tex> R(T^*) = (\operatorname{Ker} T)^{\perp} = (\{0\})^{\perp} = X^* </tex>. | ||
− | Тогда <tex> \operatorname{Ker} T^* = {0} </tex>, и <tex> R(T) = (\operatorname{Ker} T^*)^{\perp} = X </tex>. | + | Тогда, применив первый пункт к <tex>T^*</tex>, получим <tex> \operatorname{Ker} T^* = \{0\} </tex>, и <tex> R(T) = (\operatorname{Ker} T^*)^{\perp} = X </tex>. |
}} | }} | ||
Строка 141: | Строка 143: | ||
# <tex>\operatorname{Ker} T \ne \{0\}</tex>, тогда <tex> y = Tx</tex> разрешимо только для тех <tex>y</tex>, которые принадлежат <tex>(\operatorname{Ker} T^*)^\perp</tex> | # <tex>\operatorname{Ker} T \ne \{0\}</tex>, тогда <tex> y = Tx</tex> разрешимо только для тех <tex>y</tex>, которые принадлежат <tex>(\operatorname{Ker} T^*)^\perp</tex> | ||
|proof= | |proof= | ||
− | # <tex> \operatorname{Ker} T = \{0\} </tex>, то есть <tex> R(T) = X </tex>, тогда <tex> y = Tx </tex> действительно разрешимо для всех <tex> y </tex> | + | # <tex> \operatorname{Ker} T = \{0\} </tex>, то есть <tex> R(T) = X </tex>, значит, он осуществляет биекцию, и так как ограничен, по [[Теорема Банаха об обратном операторе#banachhom|теореме Банаха о гомеоморфизме]], непрерывно обратим, тогда <tex> y = Tx </tex> действительно разрешимо для всех <tex> y </tex> |
# <tex> \operatorname{Ker} T \ne \{0\} </tex>, по первой теореме этого параграфа, <tex> R(T) = \operatorname{Cl} R(T) </tex>. По [[Сопряженный оператор#Теоремы о множестве значений оператора|общим теоремам о сопряженном операторе]], <tex> \operatorname{Cl} R(T) = (\operatorname{Ker} T^*)^\perp </tex>. Рассмотрим <tex> y = Tx </tex>, очевидно, оно разрешимо, когда <tex> y \in R(T) </tex>, то есть, <tex> y \in (\operatorname{Ker} T^*)^\perp </tex>. | # <tex> \operatorname{Ker} T \ne \{0\} </tex>, по первой теореме этого параграфа, <tex> R(T) = \operatorname{Cl} R(T) </tex>. По [[Сопряженный оператор#Теоремы о множестве значений оператора|общим теоремам о сопряженном операторе]], <tex> \operatorname{Cl} R(T) = (\operatorname{Ker} T^*)^\perp </tex>. Рассмотрим <tex> y = Tx </tex>, очевидно, оно разрешимо, когда <tex> y \in R(T) </tex>, то есть, <tex> y \in (\operatorname{Ker} T^*)^\perp </tex>. | ||
}} | }} | ||
Строка 174: | Строка 176: | ||
То что было в скобке обозначим за <tex>t</tex>. | То что было в скобке обозначим за <tex>t</tex>. | ||
Тогда <tex>z_{n+p}-z_n = A y_{n+p} - A y_n = \lambda_{n+p} y_{n+p} - t =\lambda_{n+p}(y_{n+p} - \frac{t}{\lambda_{n+p}})</tex> | Тогда <tex>z_{n+p}-z_n = A y_{n+p} - A y_n = \lambda_{n+p} y_{n+p} - t =\lambda_{n+p}(y_{n+p} - \frac{t}{\lambda_{n+p}})</tex> | ||
− | Получаем: <tex>\|z_{n+p} - z_n\| = |\lambda_{n+p}| \|y_{n+p} - \frac{t}{\lambda_{n+p}}|</tex>, где первый множитель не меньше <tex>\alpha</tex>, а второй — <tex>\frac 1 2</tex> (по построению <tex>y_n</tex>) , в итоге <tex>\|z_{n+p} - z_n\| \geq \frac{\alpha}{2}</tex> и, значит, из <tex>\{z_n\}</tex> не выделить сходящейся подпоследовательности. Получили противоречие, а значит, на каждом отрезке <tex>[\alpha, \|A\|]</tex> действительно конечное число собственных чисел, и спектр счетен. | + | Получаем: <tex>\|z_{n+p} - z_n\| = |\lambda_{n+p}| \|y_{n+p} - \frac{t}{\lambda_{n+p}}\|</tex>, где первый множитель не меньше <tex>\alpha</tex>, а второй — <tex>\frac 1 2</tex> (по построению <tex>y_n</tex>) , в итоге <tex>\|z_{n+p} - z_n\| \geq \frac{\alpha}{2}</tex> и, значит, из <tex>\{z_n\}</tex> не выделить сходящейся подпоследовательности. Получили противоречие, а значит, на каждом отрезке <tex>[\alpha, \|A\|]</tex> действительно конечное число собственных чисел, и спектр счетен. |
Осталось проверить, что только <tex>0</tex> может быть предельной точкой. Пусть это не так, и какое-то <tex>\lambda \ne 0</tex> — предельная точка, это означает, что для любого <tex>\forall \varepsilon: 0 < \varepsilon < \frac{\lambda}{2}</tex>, во множестве <tex>[\lambda - \varepsilon, \lambda) \cup (\lambda, \lambda + \varepsilon]</tex> содержится собственное число, то есть в отрезке <tex>[\frac{\lambda}{2}, \|A\|]</tex> содержится счетно-бесконечное число точек спектра, чего быть не может, как мы уже показали выше. | Осталось проверить, что только <tex>0</tex> может быть предельной точкой. Пусть это не так, и какое-то <tex>\lambda \ne 0</tex> — предельная точка, это означает, что для любого <tex>\forall \varepsilon: 0 < \varepsilon < \frac{\lambda}{2}</tex>, во множестве <tex>[\lambda - \varepsilon, \lambda) \cup (\lambda, \lambda + \varepsilon]</tex> содержится собственное число, то есть в отрезке <tex>[\frac{\lambda}{2}, \|A\|]</tex> содержится счетно-бесконечное число точек спектра, чего быть не может, как мы уже показали выше. |
Текущая версия на 19:42, 4 сентября 2022
Пусть
, непрерывна на ..
, — компактный оператор.
Будем изучать так называемые интегральные уравнения Фредгольма:
в .Фредгольмом в начале XX века была разработана теория решения таких уравнений без использования методов функционального анализа. В 30-е годы XX века Шаудер обобщил ее на абстрактные компактные операторы.
Пусть
— -пространство, , — компактный.Ставим задачу:
дано, когда разрешимо относительно ?— операторные уравнения второго рода (явно выделен ). Уравнения первого рода ( ) решаются гораздо сложней. Объясняется это достаточно просто: . Если , то, по теореме Банаха, непрерывно обратим, следовательно, при достаточно больших , разрешимо при любой левой части, причём решения будут непрерывно зависеть от . Интересна ситуация при . В случае компактного A ответ даёт теория Шаудера.
Будем считать
Утверждение: |
— компактный оператор. Тогда |
, таким образом, ядро — неподвижные точки . Пусть Допустим, что — единичный шар, — подпространство . . Так как — компактный, — компакт в , но в бесконечномерном пространстве шар ( будет шаром в подпространстве ) не может быть компактом, получаем противоречие. Значит, если — компактный, то . |
Теорема: |
Пусть , компактен, тогда замкнуто. |
Доказательство: |
Ранее мы доказали, что если уравнение допускает априорную оценку ( ), то замкнуто. Нужно доказать, что у есть априорная оценка. Пусть . Тогда . Значит, все решения уравнения записываются в форме , где — одно из решений, принадлежит . Но .Рассмотрим функцию от переменных . Эта функция — не что иное, как наилучшее приближение элементами конечномерного , теорема о наилучшем приближении гарантирует нам, что существуют ., среди всех решений уравнения существует решение с минимальной нормой. Его назовём , и далее докажем, что эти решения допускают априорную оценку через . Допустим, априорной оценки не существует, тогда можно построить последовательность и (минимальных по норме решений с правой частью ), таких, что .В силу линейности уравнения, можно выбрать с единичной нормой, тогда ., так как ограничено и компактен, то из можно выделить сходящуюся подпоследовательность . Тогда получаем .Но , значит, .То есть, .Получили, что , но, так как мы выбирали минимальное по норме , то — противоречие, значит, априорная оценка существует, замкнуто, и теорема доказана. |
Докажем теперь два утверждения.
Утверждение: |
Пусть , — компактный оператор.
Тогда . |
Идея доказательства подобных утверждений следующая: идем от противного и, пользуясь леммой Рисса, строим ограниченную последовательность точек. Применяя к ней , получаем последовательность, из которой можно выделить сходящуюся подпоследовательность. После этого ищем противоречие с условием.
Второе слагаемое является компактным оператором, обозначим его за , ., тогда . Пусть , и , тогда , то есть, .Допустим, что (строго). — подпространство .Применим к паре подпространств лемму Рисса:
Таким образом выстраиваем последовательность ., из можно выделить сходящуюся подпоследовательность. . Обозначим сумму в скобках за .Заметим, что .. Здесь первое слагаемое равно нулю по определению последовательности Но раз . Второе же, так как операторы и коммутируют, равно , и . , то , и , чего не может быть, поскольку в этом случае мы не сможем выделить из сходящуюся подпоследовательность. Поэтому наше предположение неверно, теорема доказана. |
Утверждение: |
Пусть — компактный оператор на банаховом , .
Тогда . |
: Пусть существует .Так как , то у уравнения существует решение, обозначим его ., то есть, . Заметим, что , в противном случае , что противоречит нашему предположению.Значит, (строго). Действуя аналогично, берем решение уравнения — , .Получаем бесконечную цепочку строго вложенных множеств , существование которой противоречит предыдущему утверждению, значит, .: Пусть .Тогда, применив первый пункт к — замкнутое множество, , . , получим , и . |
Альтернатива Фредгольма-Шаудера
Теорема (альтернатива Фредгольма-Шаудера): |
Пусть — компактный оператор и . Тогда возможно только две ситуации:
|
Доказательство: |
|
Теорема о счетности спектра компактного оператора
Рассмотрим
.- , тогда оператор необратим, и — собственное число, то есть .
- , тогда по альтернативе, оператор непрерывно обратим, то есть .
Таким образом, спектр состоит из собственных чисел, и, возможно, нуля. Теперь изучим мощность спектра:
Теорема: |
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0. |
Доказательство: |
Так как спектр линейного ограниченного оператора входит в круг радиуса , получаем . Рассмотрим , проверим, что на отрезке — конечное число точек спектра. Предположим обратное, тогда выделим подпоследовательность различных собственных значений (каждое из них больше ). Пусть им соответствуют собственные векторы .Покажем, что при любом , собственные векторы — линейно независимы, и что линейные оболочки и строго вложены друг в друга. Доказательство по индукции: для — тривиально. Пусть — ЛНЗ, покажем, что — тоже ЛНЗ. Покажем от противного: пусть . Подействуем на обе части оператором : . Разделив обе части на (он ненулевой), получим другое разложение по векторам : . Но так как разложение по линейно независимой системе должно быть единственно, то получаем, что , здесь либо нулевое, либо . Так как собственный вектор ненулевой, найдется такое , что , и тогда , то есть получили два одинаковых собственных значения, противоречие, а значит, — ЛНЗ и включение — строгое.Применим к цепи подпространств лемму Рисса о почти перпендикуляре: . Проделав такое для каждого , получим последовательность , заметим, что она ограничена 1. Определим . В силу компактности из можно выбрать сходящуюся последовательность точек. Проверим, что это сделать нельзя, противоречие будет связано с допущением о том, что на бесконечное количество точек.Составим разность . Проверим, что то, что находится в скобке, принадлежит .. . , . Подействуем A: . Разность . и, следовательно, принадлежит .
|