Алгоритм Шибера-Вишкина — различия между версиями
м (rollbackEdits.php mass rollback) |
|||
(не показано 20 промежуточных версий 3 участников) | |||
Строка 15: | Строка 15: | ||
<tex>T</tex> {{---}} входное дерево с <tex>n</tex> вершинами. Для него нужно отвечать на запросы <tex>LCA</tex>.<br> | <tex>T</tex> {{---}} входное дерево с <tex>n</tex> вершинами. Для него нужно отвечать на запросы <tex>LCA</tex>.<br> | ||
<tex>B</tex> {{---}} полное [[Дерево поиска, наивная реализация|двоичное дерево]] с не менее, чем <tex>n</tex> вершинами. Будет введено и объяснено дальше.<br> | <tex>B</tex> {{---}} полное [[Дерево поиска, наивная реализация|двоичное дерево]] с не менее, чем <tex>n</tex> вершинами. Будет введено и объяснено дальше.<br> | ||
− | <tex> | + | <tex>S(v)</tex> {{---}} поддерево вершины <tex>v</tex>. Здесь и далее считаем, что вершина является и своим предком, и своим потомком.<br> |
<tex>v</tex> ''выше'' <tex>u</tex> {{---}} то же самое, что <tex>u \in S(v)</tex>. Корень выше любой вершины. | <tex>v</tex> ''выше'' <tex>u</tex> {{---}} то же самое, что <tex>u \in S(v)</tex>. Корень выше любой вершины. | ||
− | + | Перенумеруем вершины в порядке [[Дерево поиска, наивная реализация|префиксного обхода дерева]]. Обозначим за <tex>\operatorname{size} v</tex> количество вершин в поддереве вершины <tex>v</tex>. | |
− | Перенумеруем вершины в порядке префиксного обхода дерева | ||
− | |||
− | |||
− | Обозначим за <tex>\operatorname{size} v</tex> количество вершин в поддереве вершины <tex>v</tex>. | ||
{{Утверждение | {{Утверждение | ||
|statement=Пусть <tex>u \in S(v)</tex>. Тогда | |statement=Пусть <tex>u \in S(v)</tex>. Тогда | ||
− | <tex>\operatorname{ | + | <tex>\operatorname{preOrder} u \in [\operatorname{preOrder} v; \operatorname{preOrder}v + \operatorname{size} v - 1]</tex> |
|proof= | |proof= | ||
− | По определению <tex>\operatorname{ | + | По определению <tex>\operatorname{preOrder}</tex>: <tex>\operatorname{preOrder} u</tex> вершин из поддерева <tex>v</tex> образуют |
отрезок натуральных чисел длиной <tex>\operatorname{size} v - 1</tex>. Так как этот отрезок начинается с | отрезок натуральных чисел длиной <tex>\operatorname{size} v - 1</tex>. Так как этот отрезок начинается с | ||
− | <tex>\operatorname{ | + | <tex>\operatorname{preOrder}v + 1</tex>, то <tex>\operatorname{preOrder} u</tex> лежит в отрезке <tex>[\operatorname{preOrder} v; \operatorname{preOrder} v + \operatorname{size} v - 1]</tex>. |
}} | }} | ||
Строка 36: | Строка 32: | ||
{{Утверждение | {{Утверждение | ||
− | |statement=В качестве <tex>\operatorname{inlabel} v</tex> можно выбрать <tex>\operatorname{ | + | |statement=В качестве <tex>\operatorname{inlabel} v</tex> можно выбрать <tex>\operatorname{preOrder} u</tex>, кратное максимальной степени двойки, где <tex>u \in S(v)</tex>. |
|proof= | |proof= | ||
− | Пусть <tex>\operatorname{inlabel} v = \operatorname{ | + | Пусть <tex>\operatorname{inlabel} v = \operatorname{preOrder} u = k2^b</tex>, <tex>b</tex> {{---}} максимально. |
− | Пусть есть вершина <tex>u' \in S(v)</tex> такая, что <tex>\operatorname{ | + | Пусть есть вершина <tex>u' \in S(v)</tex> такая, что <tex>\operatorname{preOrder} u' = k'2^b</tex>. |
Так как в отрезке, соответствующем вершине <tex>v</tex> есть два числа, кратных <tex>2^b</tex>, то | Так как в отрезке, соответствующем вершине <tex>v</tex> есть два числа, кратных <tex>2^b</tex>, то | ||
там есть и число, кратное <tex>2^{b+1}</tex>. Но тогда <tex>\operatorname{inlabel} v</tex> выбран неверно. | там есть и число, кратное <tex>2^{b+1}</tex>. Но тогда <tex>\operatorname{inlabel} v</tex> выбран неверно. | ||
− | Значит, в поддереве <tex>v</tex> есть только одна такая вершина <tex>u</tex>, что <tex>2^{max} | \operatorname{ | + | Значит, в поддереве <tex>v</tex> есть только одна такая вершина <tex>u</tex>, что <tex>2^{max} | \operatorname{preOrder} u</tex>. |
Рассмотрим два случая. | Рассмотрим два случая. | ||
− | '''Первый случай''' <tex>\operatorname{inlabel} v = \operatorname{ | + | '''Первый случай''': <tex>\operatorname{inlabel} v = \operatorname{preOrder} v</tex>. Других таких вершин <tex>u'</tex>, что <tex>u'</tex> дает такую же степень двойки, нет. |
− | Других таких вершин <tex>u'</tex>, что <tex>u'</tex> дает такую же степень двойки, нет. | ||
Значит, во всех поддеревьях <tex>v</tex> значения <tex>\operatorname{inlabel}</tex> отличаются | Значит, во всех поддеревьях <tex>v</tex> значения <tex>\operatorname{inlabel}</tex> отличаются | ||
от <tex>\operatorname{inlabel} v</tex>. | от <tex>\operatorname{inlabel} v</tex>. | ||
− | '''Второй случай''' <tex>\operatorname{inlabel} v = \operatorname{ | + | '''Второй случай''': <tex>\operatorname{inlabel} v = \operatorname{preOrder} u</tex>, <tex>u \in S(v), u \ne v</tex>. Так как в поддереве <tex>v</tex> представлены все <tex>\operatorname{preOrder}</tex>-ы из отрезка <tex>[\operatorname{preOrder} v; \operatorname{preOrder} v + \operatorname{size} v - 1]</tex>, то рассмотрим того непосредственного потомка <tex>w</tex> вершины <tex>v</tex>, что <tex>u \in S(w)</tex>. Тогда, так как степень двойки у <tex>u</tex> максимальна, по утверждению в начале доказательства, других вершин с такой же степенью двойки нет, то <tex>\operatorname{inlabel} w = \operatorname{inlabel} v = \operatorname{preOrder} u</tex>. Так как отрезки, соответствующие поддеревьям сыновей, не пересекаются, не найдется другого <tex>w'</tex> {{---}} потомок <tex>v</tex>, что в поддереве <tex>w'</tex> есть вершина с такой же степенью двойки. Значит, все вершины <tex>v'</tex>, у которых <tex>\operatorname{inlabel} v' = \operatorname{inlabel} v</tex> находятся в поддереве <tex>w</tex>. |
Получили, что прообраз <tex>\operatorname{inlabel} v</tex> в вершине <tex>v</tex> или обрывается, или продолжается вниз ровно в одного потомка. Значит, прообраз <tex>\operatorname{inlabel} v</tex> {{---}} простой путь из какой-то вершины вниз в <tex>T</tex>, что и требовалось доказать. | Получили, что прообраз <tex>\operatorname{inlabel} v</tex> в вершине <tex>v</tex> или обрывается, или продолжается вниз ровно в одного потомка. Значит, прообраз <tex>\operatorname{inlabel} v</tex> {{---}} простой путь из какой-то вершины вниз в <tex>T</tex>, что и требовалось доказать. | ||
Строка 57: | Строка 52: | ||
{{Утверждение | {{Утверждение | ||
− | |statement=<tex>\operatorname{inlabel} v = 2^i \lfloor\dfrac{\operatorname{ | + | |statement=<tex>\operatorname{inlabel} v = 2^i \bigg\lfloor \dfrac{\operatorname{preOrder} v + \operatorname{size} v}{2^i}\bigg\rfloor</tex>, где <tex>i = \lfloor\log_2 ((\operatorname{preOrder} - 1) \oplus (\operatorname{preOrder} v + \operatorname{size} v - 1)) \rfloor</tex> |
|proof= | |proof= | ||
− | Посмотрим на <tex>A = (\operatorname{ | + | Посмотрим на <tex>A = (\operatorname{preOrder} v - 1) \oplus (\operatorname{preOrder} v + \operatorname{size} v - 1)</tex>. |
− | Посмотрим на позицию | + | Посмотрим на позицию самого значимого единичного бита <tex>l</tex> в <tex>A</tex>. |
− | Так как в <tex>\operatorname{ | + | Так как в <tex>\operatorname{preOrder} v - 1</tex> там еще <tex>0</tex>, а в <tex>\operatorname{preOrder} v + \operatorname{size} v - 1</tex> {{---}} уже единица, то в отрезке <tex>[\operatorname{preOrder} v; \operatorname{preOrder} v + \operatorname{size} v]</tex> есть число, кратное <tex>2^l</tex>. |
Докажем, что нет чисел, кратных <tex>2^{l+1}</tex>. Пусть такое число нашлось. Тогда <tex>l</tex>-й бит менялся хотя бы два раза, а значит, менялся | Докажем, что нет чисел, кратных <tex>2^{l+1}</tex>. Пусть такое число нашлось. Тогда <tex>l</tex>-й бит менялся хотя бы два раза, а значит, менялся | ||
− | <tex>l+1</tex>-й бит. А значит, самый значащий отличающийся бит в <tex>\operatorname{ | + | <tex>l+1</tex>-й бит. А значит, самый значащий отличающийся бит в <tex>\operatorname{preOrder} v - 1</tex> и в <tex>\operatorname{preOrder} v + \operatorname{size} v - 1</tex> больше, чем <tex>l</tex>-й. |
Заметим, что функция <tex>\lfloor \log_2 a \rfloor + 1</tex> просто выделяет номер самого значашего единичного бита. | Заметим, что функция <tex>\lfloor \log_2 a \rfloor + 1</tex> просто выделяет номер самого значашего единичного бита. | ||
Строка 82: | Строка 77: | ||
}} | }} | ||
− | Посчитаем для каждого <tex>\operatorname{inlabel} v</tex> множество всех его | + | Посчитаем для каждого <tex>\operatorname{inlabel} v</tex> множество всех его предков в <tex>B</tex> по основным ребрам. Заметим, что для хранения одного предка достаточно хранить только его высоту в дереве. Чтобы восстановить его значение, нужно просто подняться на <tex>\Delta h</tex> вверх от вершины <tex>v</tex>. Поэтому, все это множество можно уместить в целое число: <tex>i</tex>-й бит будет единицей, если есть предок на высоте <tex>i</tex>. Назовем это число, отвечающее множеству предков, <tex>\operatorname{ascendant} v</tex>. |
В дальнейшем <tex>\operatorname{ascendant} v </tex> поможет в поиске <tex>LCA(\operatorname{inlabel} v, \operatorname{inlabel} u)</tex>. Также, нам понадобится еще следующая информация. <tex>\operatorname{head} v</tex> {{---}} самая не глубокая вершина <tex>u</tex> такая, что <tex>\operatorname{inlabel} v = \operatorname{inlabel} u</tex>. <tex>\operatorname{level} v</tex> {{---}} глубина вершины <tex>v</tex> в <tex>T</tex>. | В дальнейшем <tex>\operatorname{ascendant} v </tex> поможет в поиске <tex>LCA(\operatorname{inlabel} v, \operatorname{inlabel} u)</tex>. Также, нам понадобится еще следующая информация. <tex>\operatorname{head} v</tex> {{---}} самая не глубокая вершина <tex>u</tex> такая, что <tex>\operatorname{inlabel} v = \operatorname{inlabel} u</tex>. <tex>\operatorname{level} v</tex> {{---}} глубина вершины <tex>v</tex> в <tex>T</tex>. | ||
==Обработка запроса== | ==Обработка запроса== | ||
− | Пусть <tex>x</tex>, <tex>y</tex> {{---}} вершины в исходном дереве <tex>LCA</tex> которых необходимо найти. Если <tex>\operatorname{inlabel} x = \operatorname{inlabel} y</tex>, то они принадлежат одному простому пути, а следовательно ответом на запрос является <tex>x</tex>, если <tex>\operatorname{level} x \ | + | Пусть <tex>x</tex>, <tex>y</tex> {{---}} вершины в исходном дереве <tex>LCA</tex> которых необходимо найти. Если <tex>\operatorname{inlabel} x = \operatorname{inlabel} y</tex>, то они принадлежат одному простому пути, а следовательно ответом на запрос является <tex>x</tex>, если <tex>\operatorname{level} x \leqslant \operatorname{level} y</tex>, и <tex>y</tex>, в противном случае. Теперь рассмотрим случай, когда <tex>\operatorname{inlabel} x \ne \operatorname{inlabel} y</tex>, то есть <tex>x</tex> и <tex>y</tex> принадлежат разным простым путям. |
{{Утверждение | {{Утверждение | ||
|statement=Следующие вычисления позволяют найти <tex>\operatorname{inlabel} LCA(x,y)</tex>: | |statement=Следующие вычисления позволяют найти <tex>\operatorname{inlabel} LCA(x,y)</tex>: | ||
− | #<tex>i | + | #<tex>i = \lfloor\log_2 (\operatorname{inlabel} x \oplus \operatorname{inlabel} y)\rfloor</tex> |
− | #<tex>path | + | #<tex>path = 2^i \lfloor\dfrac{(\operatorname{ascendant} x) \wedge (\operatorname{ascendant} y)}{2^i}\rfloor</tex> |
− | #<tex>\operatorname{inlabel} LCA(x, y) | + | #<tex>\operatorname{inlabel} LCA(x, y) = \lfloor\dfrac12(path \oplus (path - 1))\rfloor + 1</tex> |
|proof=<tex>\operatorname{inlabel} x</tex> и <tex>\operatorname{inlabel} y</tex> {{---}} вершины в <tex>B</tex>. Биты в их записи задают задают их местоположение в дереве. | |proof=<tex>\operatorname{inlabel} x</tex> и <tex>\operatorname{inlabel} y</tex> {{---}} вершины в <tex>B</tex>. Биты в их записи задают задают их местоположение в дереве. | ||
Ноль {{---}} спуститься влево, единица {{---}} спуститься вправо или остаться здесь. Значит, наиболее значимый бит побитового исключающего или их номеров даст глубину, на которой пути до этих вершин начинают расходиться. Это и хранится в <tex>i</tex>. | Ноль {{---}} спуститься влево, единица {{---}} спуститься вправо или остаться здесь. Значит, наиболее значимый бит побитового исключающего или их номеров даст глубину, на которой пути до этих вершин начинают расходиться. Это и хранится в <tex>i</tex>. | ||
Строка 111: | Строка 106: | ||
==Оценка сложности== | ==Оценка сложности== | ||
===Построение=== | ===Построение=== | ||
− | Подсчет | + | Подсчет массивов <tex> \operatorname{inlabel} </tex> и <tex> \operatorname{preOrder}</tex> занимает <tex>O(n)</tex>: <tex> \operatorname{preOrder}</tex> можно посчитать, например, [[Обход в глубину, цвета вершин|обходом в глубину]], а <tex> \operatorname{inlabel} </tex> выражается через <tex> \operatorname{preOrder}</tex>, как описано выше. |
===Запрос=== | ===Запрос=== | ||
− | + | <tex>\operatorname{inlabel} LCA(x, y)</tex> и <tex>\operatorname{head} v'</tex> вычисляются за <tex>O(1)</tex>, следовательно, нужно сделать <tex>O(1)</tex> действий для ответа на запрос. | |
== См.также == | == См.также == | ||
Строка 120: | Строка 115: | ||
*[[Метод двоичного подъема]] | *[[Метод двоичного подъема]] | ||
== Источники информации == | == Источники информации == | ||
− | [http://ia600208.us.archive.org/12/items/onfindinglowe00schi/onfindinglowe00schi.pdf | + | * [http://ia600208.us.archive.org/12/items/onfindinglowe00schi/onfindinglowe00schi.pdf Baruch Schieber, Uzi Vishkin, "On Finding Lowest Common Ancestors: Simplification and Parallelization"] |
[[Категория: Дискретная математика и алгоритмы]] | [[Категория: Дискретная математика и алгоритмы]] | ||
[[Категория: Задача о наименьшем общем предке]] | [[Категория: Задача о наименьшем общем предке]] |
Текущая версия на 19:07, 4 сентября 2022
Алгоритм Шибера-Вишкина (англ.Schieber-Vishkin ) применяется для нахождения наименьшего общего предка двух вершин в дереве. Он использует времени на препроцессинг и затем отвечает на каждый запрос за .
Содержание
Идея алгоритма
Основная идея алгоритма следующая.
- Если бы дерево, в котором нужно искать было бы простым путем, можно было бы найти просто взяв ту вершину, которая находится в дереве ближе к корню.
- Если дерево — полное двоичное дерево, высоты , то можно сопоставить каждой вершине битовый вектор длиной (целое число от до ) и с помощью битовых операций над этими векторами найти
Тогда, представив данное дерево как полное двоичное дерево, в некоторых вершинах которого находится простой путь, можно научиться искать в нем за .
Препроцессинг
— полное двоичное дерево с не менее, чем вершинами. Будет введено и объяснено дальше.
— поддерево вершины . Здесь и далее считаем, что вершина является и своим предком, и своим потомком.
выше — то же самое, что . Корень выше любой вершины.
Перенумеруем вершины в порядке префиксного обхода дерева. Обозначим за количество вершин в поддереве вершины .
Утверждение: |
Пусть . Тогда
|
По определению : вершин из поддерева образуют отрезок натуральных чисел длиной . Так как этот отрезок начинается с , то лежит в отрезке . |
Покроем дерево путями. А именно, сопоставим каждой вершине
число такое, что прообраз каждого в связен и является простым путем от какой-то вершины вниз до листа.Утверждение: |
В качестве можно выбрать , кратное максимальной степени двойки, где . |
Пусть , — максимально. Пусть есть вершина такая, что . Так как в отрезке, соответствующем вершине есть два числа, кратных , то там есть и число, кратное . Но тогда выбран неверно. Значит, в поддереве есть только одна такая вершина , что .Рассмотрим два случая. Первый случай: . Других таких вершин , что дает такую же степень двойки, нет. Значит, во всех поддеревьях значения отличаются от .Второй случай: Получили, что прообраз , . Так как в поддереве представлены все -ы из отрезка , то рассмотрим того непосредственного потомка вершины , что . Тогда, так как степень двойки у максимальна, по утверждению в начале доказательства, других вершин с такой же степенью двойки нет, то . Так как отрезки, соответствующие поддеревьям сыновей, не пересекаются, не найдется другого — потомок , что в поддереве есть вершина с такой же степенью двойки. Значит, все вершины , у которых находятся в поддереве . в вершине или обрывается, или продолжается вниз ровно в одного потомка. Значит, прообраз — простой путь из какой-то вершины вниз в , что и требовалось доказать. |
Утверждение: |
, где |
Посмотрим на . Посмотрим на позицию самого значимого единичного бита в .Так как в там еще , а в — уже единица, то в отрезке есть число, кратное .Докажем, что нет чисел, кратных . Пусть такое число нашлось. Тогда -й бит менялся хотя бы два раза, а значит, менялся -й бит. А значит, самый значащий отличающийся бит в и в больше, чем -й.Заметим, что функция просто выделяет номер самого значашего единичного бита.Функция Чтобы получить из отрезка число, кратное обнуляет все биты младше -го. , будучи уверенными, что оно там есть, достаточно обнулить битов в правой границе отрезка. |
Каждое значение
соответствует вершине в полном двоичном дереве высоты . В дереве на одном наборе вершин будет построено два набора ребер: каркасные и основные. Для каждой вершины с уровня, кроме последнего, будут каркасные ребра и . Таким образом, вершины в будут занумерованы в инфиксном порядке обхода по каркасным ребрам: сначала обрабатывается левое поддерево, потом — вершина, потом — правое поддерево. В будет основное ребро между вершинами и , если в есть ребро . Корень имеет номер . Будем говорить, что вершина лежит в поддереве вершины ( ), если от есть путь до по каркасным ребрам.Утверждение: |
Если в есть ребро , то в :
Другими словами, все основные ребра направлены вниз. |
Посчитаем для каждого
множество всех его предков в по основным ребрам. Заметим, что для хранения одного предка достаточно хранить только его высоту в дереве. Чтобы восстановить его значение, нужно просто подняться на вверх от вершины . Поэтому, все это множество можно уместить в целое число: -й бит будет единицей, если есть предок на высоте . Назовем это число, отвечающее множеству предков, .В дальнейшем
поможет в поиске . Также, нам понадобится еще следующая информация. — самая не глубокая вершина такая, что . — глубина вершины в .Обработка запроса
Пусть
, — вершины в исходном дереве которых необходимо найти. Если , то они принадлежат одному простому пути, а следовательно ответом на запрос является , если , и , в противном случае. Теперь рассмотрим случай, когда , то есть и принадлежат разным простым путям.Утверждение: |
Следующие вычисления позволяют найти :
|
и — вершины в . Биты в их записи задают задают их местоположение в дереве. Ноль — спуститься влево, единица — спуститься вправо или остаться здесь. Значит, наиболее значимый бит побитового исключающего или их номеров даст глубину, на которой пути до этих вершин начинают расходиться. Это и хранится в . Значит, мы нашли Взяв побитовое и по каркасным ребрам. Однако, могло случиться так, что по основным ребрам, поиском которого мы занимаемся, находится выше (он не может находиться ниже или в стороне, так как все основные ребра направлены вниз). и , в старших единичных битах мы получим путь от корня по основным ребрам до этих вершин. При этом, про те биты, которые отвечают за уровни ниже , ничего не известно. Поэтому, нужно их обнулить. Умножение и деление на обнулят ненужные биты. После этого, для нахождения по основным ребрам, нужно найти в наименее значимый единичный бит. Формула имеено это и делает. |
После этих действий нами был получен путь, в котором находится ответ. Осталось посмотреть на точки входа
и на путь . Это можно сделать с помощью посчитанной функции : найти , где — вершина предпоследнего пути в пути. Тогда, поднявшись от нее на один вверх по начальному дереву, получим искомую точку входа.Имея две точки входа, можно, как и в первом случае, сравнить их по высоте и выбрать более высокое из них.
Оценка сложности
Построение
Подсчет массивов обходом в глубину, а выражается через , как описано выше.
и занимает : можно посчитать, например,Запрос
и вычисляются за , следовательно, нужно сделать действий для ответа на запрос.