Adaptive precision arithmetic — различия между версиями
Smolcoder (обсуждение | вклад) |
Smolcoder (обсуждение | вклад) |
||
Строка 2: | Строка 2: | ||
==Мотивация== | ==Мотивация== | ||
Все вычисления, производимые компьютером во ''floating-point[http://en.wikipedia.org/wiki/Floating_point]'' модели, имеют погрешность. При большом количестве арифметических действий она возрастает. Во многих случаях результирующая погрешность уже не устраивает, и требуется либо абсолютно точное вычисление, либо меньшая погрешность. Одним из решений данной проблемы является хранение чисел в виде рациональных дробей, в которых числитель и знаменатель представляется в виде длинного целого числа. Но работать с такими числами довольно "дорого" по времени и тяжело в реализации: необходимо писать факторизацию чисел, эффективно сокращать дроби. Для улучшения работы нужны определенные оптимизации. Одной из них и является использование adaptive precision arithmetic. | Все вычисления, производимые компьютером во ''floating-point[http://en.wikipedia.org/wiki/Floating_point]'' модели, имеют погрешность. При большом количестве арифметических действий она возрастает. Во многих случаях результирующая погрешность уже не устраивает, и требуется либо абсолютно точное вычисление, либо меньшая погрешность. Одним из решений данной проблемы является хранение чисел в виде рациональных дробей, в которых числитель и знаменатель представляется в виде длинного целого числа. Но работать с такими числами довольно "дорого" по времени и тяжело в реализации: необходимо писать факторизацию чисел, эффективно сокращать дроби. Для улучшения работы нужны определенные оптимизации. Одной из них и является использование adaptive precision arithmetic. | ||
+ | |||
+ | ==Background== | ||
+ | Большинство современных процессоров поддерживают числа с плавающей точкой в форме <tex> \pm significand \times 2^{exponent}</tex>. Значащая часть числа (мантисса) представляет собой <tex>p</tex>-битное двоичное число в форме <tex>b.bbb \dots</tex>, где каждое <tex>b</tex> | ||
+ | обозначает один бит. Также имеется один бит на знак. | ||
+ | |||
+ | Числа с плавающей точкой, как правило, ''нормализованы'', то есть если число не равно нулю, то первый значимый бит равен единице, а экспонента устанавливается соответственно. Например, в <tex>p</tex>-битной арифметике число 1101 (десятичное 13) будет выглядеть как <tex>1.101 \times 2^3</tex>. |
Версия 03:59, 20 октября 2011
Мотивация
Все вычисления, производимые компьютером во floating-point[1] модели, имеют погрешность. При большом количестве арифметических действий она возрастает. Во многих случаях результирующая погрешность уже не устраивает, и требуется либо абсолютно точное вычисление, либо меньшая погрешность. Одним из решений данной проблемы является хранение чисел в виде рациональных дробей, в которых числитель и знаменатель представляется в виде длинного целого числа. Но работать с такими числами довольно "дорого" по времени и тяжело в реализации: необходимо писать факторизацию чисел, эффективно сокращать дроби. Для улучшения работы нужны определенные оптимизации. Одной из них и является использование adaptive precision arithmetic.
Background
Большинство современных процессоров поддерживают числа с плавающей точкой в форме
. Значащая часть числа (мантисса) представляет собой -битное двоичное число в форме , где каждое обозначает один бит. Также имеется один бит на знак.Числа с плавающей точкой, как правило, нормализованы, то есть если число не равно нулю, то первый значимый бит равен единице, а экспонента устанавливается соответственно. Например, в
-битной арифметике число 1101 (десятичное 13) будет выглядеть как .