Гильбертовы пространства — различия между версиями
(ссылка на Рисса-Фишера) |
Sementry (обсуждение | вклад) |
||
Строка 44: | Строка 44: | ||
{{Теорема | {{Теорема | ||
|statement= | |statement= | ||
− | Пусть <tex> H_1 </tex> — подпространство в <tex>H</tex>, <tex> H_2 </tex> | + | Пусть <tex> H_1 </tex> — подпространство в <tex>H</tex>, <tex> H_2 </tex> {{---}} его ортогональное дополнение. Тогда для любого <tex> x \in H </tex> существует единственное представление <tex> x = x_1 + x_2 </tex>, где <tex> x_1 \in H_1, x_2 \in H_2 </tex> и <tex> x_1 \perp x_2 </tex>. |
|proof= | |proof= | ||
Доказывалось ранее. | Доказывалось ранее. | ||
Строка 54: | Строка 54: | ||
|about=о почти перпендикуляре | |about=о почти перпендикуляре | ||
|statement= | |statement= | ||
− | Пусть <tex>X</tex> — НП, а <tex>Y</tex> - собственное (то есть не совпадающее с <tex>X</tex>) подпространство <tex>X</tex>, тогда <tex>\forall \varepsilon \in (0, 1) \; \exists z_{\varepsilon} \in X : \|z_{\varepsilon}\| = 1,\; \rho(z_{\varepsilon}, Y) \geq 1 - \varepsilon</tex> (где <tex>\rho(z, Y) = \inf\limits_{y \in Y} \|z-y\|</tex>) | + | Пусть <tex>X</tex> — НП, а <tex>Y</tex> {{---}} собственное (то есть не совпадающее с <tex>X</tex>) подпространство <tex>X</tex>, тогда <tex>\forall \varepsilon \in (0, 1) \; \exists z_{\varepsilon} \in X : \|z_{\varepsilon}\| = 1,\; \rho(z_{\varepsilon}, Y) \geq 1 - \varepsilon</tex> (где <tex>\rho(z, Y) = \inf\limits_{y \in Y} \|z-y\|</tex>) |
|proof= | |proof= | ||
Если <tex>Y</tex> — строго подмножество <tex>X</tex>, то существует <tex>x_0 \notin Y</tex>. | Если <tex>Y</tex> — строго подмножество <tex>X</tex>, то существует <tex>x_0 \notin Y</tex>. | ||
Строка 81: | Строка 81: | ||
<tex>Y_2 = \mathcal{L}(x_1, x_2)</tex>, опять применим лемму Рисса, существует <tex>x_3 \in X: \| x_3 - x_j \| \ge {1 \over 2}, j = 1, 2</tex>, <tex>x_3</tex> будет в <tex>S_1</tex>. | <tex>Y_2 = \mathcal{L}(x_1, x_2)</tex>, опять применим лемму Рисса, существует <tex>x_3 \in X: \| x_3 - x_j \| \ge {1 \over 2}, j = 1, 2</tex>, <tex>x_3</tex> будет в <tex>S_1</tex>. | ||
− | Продолжаем так же для <tex>Y_3 \dots Y_n \dots</tex>. Процесс никогда не завершится, так как <tex>X</tex> — бесконечномерное и не может быть линейной оболочкой конечного числа векторов. Таким образом построили бесконечную систему точек в <tex>S_1</tex>, | + | Продолжаем так же для <tex>Y_3 \dots Y_n \dots</tex>. Процесс никогда не завершится, так как <tex>X</tex> — бесконечномерное и не может быть линейной оболочкой конечного числа векторов. Таким образом построили бесконечную систему точек в <tex>S_1</tex>, из которой нельзя выделить сходящуюся подпоследовательность, так как <tex>\| x_n - x_m \| \ge {1 \over 2}</tex>, следовательно, <tex>S_1</tex> не компактно. |
}} | }} | ||
Строка 90: | Строка 90: | ||
<tex>T_n = \sum\limits_{k=1}^{n} \alpha_k e_k \in \mathcal{L}(e_1 \dots e_n) = H_n</tex> | <tex>T_n = \sum\limits_{k=1}^{n} \alpha_k e_k \in \mathcal{L}(e_1 \dots e_n) = H_n</tex> | ||
− | Теорема | + | {{Теорема |
+ | |statement= | ||
+ | <tex>\forall x \in H: \inf\limits_{h \in H_n} \|x - h \| = \| x - \sum\limits_{i=1}^n \langle x, e_i \rangle e_i \| </tex>. | ||
+ | |proof= | ||
+ | Доказательство есть здесь: [[L_2-теория рядов Фурье]]. | ||
+ | }} | ||
{{Теорема | {{Теорема | ||
Строка 112: | Строка 117: | ||
{{Теорема | {{Теорема | ||
|about= | |about= | ||
− | + | равенство Парсеваля | |
|statement= | |statement= | ||
− | + | <tex>\forall x: \|x\|^2 = \sum\limits_{k=1}^{\infty} \langle x; e_k \rangle^2 </tex> тогда и только тогда, когда ортонормированная система точек, по которым строятся коэффициенты Фурье, полная или замкнутая. | |
|proof= | |proof= | ||
− | + | Это доказательство (правда, по кускам) тоже есть здесь: [[L_2-теория рядов Фурье]]. | |
+ | |||
}} | }} | ||
Строка 124: | Строка 130: | ||
Пусть <tex>\{e_1, e_2, \ldots, e_n, \ldots\}</tex> - ортонормированная система в гильбертовом пространстве <tex>H</tex>, <tex>\sum\limits_{i=1}^{\infty} \alpha_i^2 \leq +\infty</tex>. Тогда <tex>\exists ! x \in H : \alpha_i = \langle x, e_i \rangle</tex> и выполняется '''равенство Парсеваля''': <tex>\sum \alpha_i^2(x) = \|x\|^2</tex> | Пусть <tex>\{e_1, e_2, \ldots, e_n, \ldots\}</tex> - ортонормированная система в гильбертовом пространстве <tex>H</tex>, <tex>\sum\limits_{i=1}^{\infty} \alpha_i^2 \leq +\infty</tex>. Тогда <tex>\exists ! x \in H : \alpha_i = \langle x, e_i \rangle</tex> и выполняется '''равенство Парсеваля''': <tex>\sum \alpha_i^2(x) = \|x\|^2</tex> | ||
|proof= | |proof= | ||
− | [[L 2-теория рядов Фурье#Теорема Рисса-Фишера|Теорема Рисса-Фишера]] | + | И это доказательство тоже здесь есть: [[L 2-теория рядов Фурье#Теорема Рисса-Фишера|Теорема Рисса-Фишера]]. |
}} | }} | ||
− | + | Можно задаться вопросом: какое топологическое свойство характеризует существование ортонормированного базиса? | |
− | + | {{Теорема | |
+ | |statement= | ||
+ | Пусть <tex>H</tex> {{---}} сепарабельное. Тогда в <tex> H </tex> существует ортнормированный базис. | ||
+ | |proof= | ||
+ | {{TODO|t=Какие-то размахивания руками. Привести в порядок}} | ||
− | <tex>\mathrm{Cl}\mathcal{L}(a_1 \dots a_n \dots) = H</tex>, следовательно, надо превратить в ОНС, чтобы линейная оболочка совпала. ОНС строится процедурой Грама-Шмидта. | + | <tex>\exists A = \{ a_1 \dots a_n \dots \}, \mathrm{Cl} A = H</tex> — счетное всюду плотное. |
+ | |||
+ | <tex>\mathrm{Cl}\mathcal{L}(a_1 \dots a_n \dots) = H</tex>, следовательно, надо превратить в ОНС, чтобы линейная оболочка совпала. | ||
+ | |||
+ | ОНС строится процедурой Грама-Шмидта. | ||
+ | }} | ||
== Ссылки == | == Ссылки == |
Версия 22:59, 13 января 2013
Определение: |
Скалярным произведением в действительном линейном пространстве
| называется функция , удовлетворяющяя следующим аксиомам:
Пример:
- тут. , то есть множество бесконечных числовых последовательностей, сумма квадратов которых сходится ( ). , сходимость этого ряда и аксиомы скалярного произведения доказаны
В УП выполняется неравенство Шварца :
УП — частный случай нормированных пространств: можно ввести норму как , неравенство Шварца используется для доказательства того, что третья аксиома нормы выполняется.
Для нормы, порожденной скалярным произведением выполняется равенство параллелограмма:
.
Определение: |
Гильбертовым пространством называют Банахово пространство, в котором норма порождена скалярным произведением. |
Теорема: |
Пусть — выпуклое замкнутое множество в , тогда . называется элементом наилучшего приближения |
Доказательство: |
Наилучшее приближение в линейных нормированных пространствах |
Определение: |
Говорят, что два элемента | гильбертова пространства перпендикулярны ( ), если
Определение: |
Пусть | — подпространство в , тогда ортогональным дополнением называется .
Теорема: |
Пусть — подпространство в , — его ортогональное дополнение. Тогда для любого существует единственное представление , где и . |
Доказательство: |
Доказывалось ранее. TODO: Где именно? Было ли вообще это утверждение доказано в курсе матана? |
Лемма (Рисc, о почти перпендикуляре): |
Пусть — НП, а — собственное (то есть не совпадающее с ) подпространство , тогда (где ) |
Доказательство: |
Если — строго подмножество , то существует .
Пусть , тогда , то есть . — замкнутое, следовательно, , то есть получили противоречие и ., тогда , . Рассмотрим Таким образом, для любого . лежит в так как оно замкнуто, тогда числитель будет больше , а знаменатель — меньше , то есть дробь будет больше . из подобрали из , что не меньше , а тогда и будет не меньше по свойствам инфимума. |
Смысл данной леммы состоит в том, что в произвольном нормированном пространстве для сколь угодно малого и произвольного подпространства найдется элемент, который будет к нему перпендикулярен с точностью до .
Теорема (некомпактность шара в бесконечномерном пространстве): |
Если - бесконечномерное НП, то единичный шар в нем не компактен. |
Доказательство: |
Возьмем , — собственное подпространство , применим лемму Рисса, возьмем , существует , заметим, что окажется в .Продолжаем так же для , опять применим лемму Рисса, существует , будет в . . Процесс никогда не завершится, так как — бесконечномерное и не может быть линейной оболочкой конечного числа векторов. Таким образом построили бесконечную систему точек в , из которой нельзя выделить сходящуюся подпоследовательность, так как , следовательно, не компактно. |
В Гильбертовых пространствах важно понятие ортонормированной системы точек:
.Рассмотрим для точки
абстрактный ряд Фурье , называют абстрактными коэффициентами Фурье.
Теорема: |
. |
Доказательство: |
Доказательство есть здесь: L_2-теория рядов Фурье. |
Теорема (Бессель, неравенство Бесселя): |
Доказательство: |
Для некоторого набора коэффициентов рассмотрим скалярное произведение:
Теперь, пусть . , имеем , устремив к бесконечности, получим требуемое. |
Интересно рассмотреть, когда для всех
неравенство превращается в равенство.Теорема (равенство Парсеваля): |
тогда и только тогда, когда ортонормированная система точек, по которым строятся коэффициенты Фурье, полная или замкнутая. |
Доказательство: |
Это доказательство (правда, по кускам) тоже есть здесь: L_2-теория рядов Фурье. |
Теорема (Рисс-Фишер): |
Пусть - ортонормированная система в гильбертовом пространстве , . Тогда и выполняется равенство Парсеваля: |
Доказательство: |
И это доказательство тоже здесь есть: Теорема Рисса-Фишера. |
Можно задаться вопросом: какое топологическое свойство характеризует существование ортонормированного базиса?
Теорема: |
Пусть — сепарабельное. Тогда в существует ортнормированный базис. |
Доказательство: |
TODO: Какие-то размахивания руками. Привести в порядок — счетное всюду плотное. ОНС строится процедурой Грама-Шмидта. , следовательно, надо превратить в ОНС, чтобы линейная оболочка совпала. |