Альтернатива Фредгольма — Шаудера — различия между версиями
(→Теорема о счетности спектра компактного оператора) |
(→Теорема о счетности спектра компактного оператора: вроде привел в нормальный вид) |
||
Строка 59: | Строка 59: | ||
Так как спектр линейного ограниченного оператора [[Спектр линейного оператора|входит в круг радиуса <tex>\|A\|</tex>]], получаем <tex>|\lambda| \in [0, \|A\|]</tex>. | Так как спектр линейного ограниченного оператора [[Спектр линейного оператора|входит в круг радиуса <tex>\|A\|</tex>]], получаем <tex>|\lambda| \in [0, \|A\|]</tex>. | ||
− | Рассмотрим <tex>\alpha > 0</tex>, проверим, что на отрезке <tex>[\alpha | + | Рассмотрим <tex>\alpha > 0</tex>, проверим, что на отрезке <tex>[\alpha,\|A\|]</tex> — конечное число точек спектра. Предположим обратное, тогда выделим подпоследовательность <tex>\lambda_1 \dots \lambda_n \dots</tex> различных собственных значений (каждое из них больше <tex>\alpha</tex>). Пусть им соответствуют собственные элементы <tex>x_1 \dots x_n \dots</tex>. |
Покажем, что при любом <tex>n</tex>, собственные элементы <tex>x_1 \dots x_n</tex> — линейно независимы, и что линейные оболочки <tex>L_n = \mathcal{L}(x_1 \dots x_n)</tex> и <tex>L_{n+1} = \mathcal{L}(x_1 \dots x_{n+1})</tex> строго вложены друг в друга. Доказательство по индукции: для <tex>n=1</tex> — тривиально. Пусть <tex>x_1 \dots x_n</tex> — ЛНЗ, покажем, что <tex>x_1 \dots x_{n+1}</tex> — тоже ЛНЗ. Покажем от противного: пусть <tex>x_{n+1} = \sum\limits_{i=1}^n \alpha_i x_i</tex>. Подействуем на обе части оператором <tex>A</tex>: <tex>Ax_{n+1} = \lambda_{n + 1} x_{n+1} = \sum\limits_{i=1}^n \alpha_i A x_i = \sum\limits_{i=1}^n \alpha_i \lambda_i x_i</tex>. Разделив обе части на <tex>\lambda_{n + 1}</tex> (он ненулевой), получим другое разложение <tex>x_{n+1}</tex> по векторам <tex>x_1 \dots x_n</tex>: <tex>x_{n+1} = \sum\limits_{i=1}^n \frac{\alpha_i \lambda_i}{\lambda_{n + 1}} x_i</tex>. Но так как разложение по линейно независимой системе должно быть единственно, то получаем, что <tex>\frac{\alpha_i \lambda_i}{\lambda_{n + 1}} = \alpha_i</tex>, здесь либо <tex>\alpha_i</tex> нулевое, либо <tex>\frac{\lambda_i}{\lambda_{n+1}} = 1</tex>. Так как собственный вектор <tex>x_{n+1}</tex> ненулевой, найдется такое <tex>q</tex>, что <tex>\alpha_q \ne 0</tex>, и тогда <tex>\frac{\lambda_q}{\lambda_{n+1}} = 1</tex>, то есть получили два одинаковых собственных значения, противоречие, а значит, <tex>x_1 \dots x_{n+1}</tex> — ЛНЗ и включение <tex>L_n \subset L_{n+1}</tex> — строгое. | Покажем, что при любом <tex>n</tex>, собственные элементы <tex>x_1 \dots x_n</tex> — линейно независимы, и что линейные оболочки <tex>L_n = \mathcal{L}(x_1 \dots x_n)</tex> и <tex>L_{n+1} = \mathcal{L}(x_1 \dots x_{n+1})</tex> строго вложены друг в друга. Доказательство по индукции: для <tex>n=1</tex> — тривиально. Пусть <tex>x_1 \dots x_n</tex> — ЛНЗ, покажем, что <tex>x_1 \dots x_{n+1}</tex> — тоже ЛНЗ. Покажем от противного: пусть <tex>x_{n+1} = \sum\limits_{i=1}^n \alpha_i x_i</tex>. Подействуем на обе части оператором <tex>A</tex>: <tex>Ax_{n+1} = \lambda_{n + 1} x_{n+1} = \sum\limits_{i=1}^n \alpha_i A x_i = \sum\limits_{i=1}^n \alpha_i \lambda_i x_i</tex>. Разделив обе части на <tex>\lambda_{n + 1}</tex> (он ненулевой), получим другое разложение <tex>x_{n+1}</tex> по векторам <tex>x_1 \dots x_n</tex>: <tex>x_{n+1} = \sum\limits_{i=1}^n \frac{\alpha_i \lambda_i}{\lambda_{n + 1}} x_i</tex>. Но так как разложение по линейно независимой системе должно быть единственно, то получаем, что <tex>\frac{\alpha_i \lambda_i}{\lambda_{n + 1}} = \alpha_i</tex>, здесь либо <tex>\alpha_i</tex> нулевое, либо <tex>\frac{\lambda_i}{\lambda_{n+1}} = 1</tex>. Так как собственный вектор <tex>x_{n+1}</tex> ненулевой, найдется такое <tex>q</tex>, что <tex>\alpha_q \ne 0</tex>, и тогда <tex>\frac{\lambda_q}{\lambda_{n+1}} = 1</tex>, то есть получили два одинаковых собственных значения, противоречие, а значит, <tex>x_1 \dots x_{n+1}</tex> — ЛНЗ и включение <tex>L_n \subset L_{n+1}</tex> — строгое. | ||
+ | Применим к цепи подпространств [[Гильбертовы пространства|лемму Рисса о почти перпендикуляре]]: <tex>\exists y_{n+1} \in L_{n+1},\|y_{n+1}\| = 1: \forall y_n \in L_n: \|y_{n+1} - y_n\| \ge \frac12</tex>. Проделав такое для каждого <tex>L_n</tex>, получим последовательность <tex>y_n</tex>, заметим, что она ограничена 1. | ||
− | + | Определим <tex>z_n = A y_n</tex>. В силу компактности <tex>A</tex> из <tex>\{z_n\}</tex> можно выбрать сходящуюся последовательность точек. Проверим, что это сделать нельзя, противоречие будет связано с допущением о том, что на <tex>[\alpha,\|A\|]</tex> бесконечное количество точек. | |
− | <tex>\ | ||
− | |||
− | |||
− | + | Составим разность <tex>z_{n+p}-z_n = A y_{n+p} - A y_n = \lambda_{n+p} y_{n+p} - (\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n)</tex>. Проверим, что то, что находится в скобке, принадлежит <tex>L_{n+p-1}</tex>. Если это так, то <tex>\lambda_{n+p} y_{n+p} - \lambda_{n+p} z = \lambda_{n+p} (y_{n+p} - z)</tex>. Получаем: <tex>\|z_{n+p} - z_n\| = |\lambda_{n+p}| \|y_{n+p} - z\|</tex>, где первый множитель не меньше <tex>\alpha</tex>, а второй — <tex>\frac 1 2</tex> (по построению <tex>y_n</tex>) , в итоге <tex>\|z_{n+p} - z_n\| \geq \frac{\alpha}{2}</tex> и, значит, из <tex>\{z_n\}</tex> не выделить сходящейся подпоследовательности. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | Составим разность <tex>z_{n+p}-z_n = A y_{n+p} - A y_n = \lambda_{n+p} y_{n+p} - (\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n)</tex>. Проверим, что то, что находится в скобке, принадлежит <tex>L_{n+p-1}</tex>. Если это так, то <tex>\lambda_{n+p} y_{n+p} - \lambda_{n+p} z = \lambda_{n+p} (y_{n+p} - z)</tex>. | ||
Осталось проверить, что <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n \in L_{n+p-1}</tex>. <tex>L_{n+p-1} = \mathcal{L} \{x_1,\ldots,x_{n+p-1}\}</tex>. <tex>y_{n+p} \in L_{n+p}</tex>, <tex>y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k x_k + \alpha_{n+p} x_{n+p}</tex>. Подействуем A: <tex>A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k A x_k + \alpha_{n+p} A x_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k \lambda_k x_k + \alpha_{n+p} \lambda_{n+p} x_{n+p} </tex>. Разность <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \beta_k x_k \in L_{n+p-1}</tex>. <tex>y_n = \sum\limits_{k=1}^n \gamma_k x_k, A y_n = \sum\limits_{k=1}^n \gamma_k \lambda_k x_k \in L_{n+p-1}</tex> и, следовательно, <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n</tex> принадлежит <tex>L_{n+p-1}</tex>. | Осталось проверить, что <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n \in L_{n+p-1}</tex>. <tex>L_{n+p-1} = \mathcal{L} \{x_1,\ldots,x_{n+p-1}\}</tex>. <tex>y_{n+p} \in L_{n+p}</tex>, <tex>y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k x_k + \alpha_{n+p} x_{n+p}</tex>. Подействуем A: <tex>A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k A x_k + \alpha_{n+p} A x_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k \lambda_k x_k + \alpha_{n+p} \lambda_{n+p} x_{n+p} </tex>. Разность <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \beta_k x_k \in L_{n+p-1}</tex>. <tex>y_n = \sum\limits_{k=1}^n \gamma_k x_k, A y_n = \sum\limits_{k=1}^n \gamma_k \lambda_k x_k \in L_{n+p-1}</tex> и, следовательно, <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n</tex> принадлежит <tex>L_{n+p-1}</tex>. | ||
}} | }} |
Версия 11:18, 9 июня 2013
, непрерывен на
A — компактный оператор (
)Интегральные уравнения Фредгольма:
в .
X — B-пространство,
, A — компактный.Ставим задачу: y дано, когда
разрешимо относительно x?— операторные уравнения второго рода (явно выделен I). Уравнения первого рода ( ) решаются гораздо сложней. Объясняется это достаточно просто: , следовательно, по теореме Банаха, непрерывно обратим, следовательно, при достаточно больших , разрешимо при любой левой части, причём решения x будут непрерывно зависеть от y. Интересна ситуация при . В случае компактного A ответ даёт теория Шаудера.
Далее будем считать
. , таким образом, ядро T — неподвижные точки A. — единичный шар, — подпространство X. . Но так как A — компактный, — компакт в Y, но в бесконечномерном пространстве шар не может быть компактом, получаем противоречие. Значит, если A — компактный, то .Теорема: |
Пусть , A компактен |
Доказательство: |
Ранее (пятый семестр же?) мы доказали, что если уравнение допускает априорную оценку ( ), то R(T) замкнуто. Нужно доказать, что у T есть априорная оценка.. Значит, все решения уравнения записываются в форме , где — одно из решений, z принадлежит . Но Рассмотрим функцию от n переменных здесь) Эта функция непрерывна (доказательство непрерывности аналогично таковому в теореме Рисса , среди всех решений уравнения существует решение с минимальной нормой. Его назовём , и далее докажем, что эти решения допускают априорную оценку через y. |
TODO: пропуск
Теорема (альтернатива Фредгольма-Шаудера): |
Пусть — компактный оператор и . Тогда возможно только две ситуации:
|
Доказательство: |
<wikitex>
TODO: каким?), $R(T) = (\operatorname{Ker} T^*)^\perp$. Рассмотрим $y = Tx$, очевидно, оно разрешимо, когда $y \in R(T)$, то есть $y \in (\operatorname{Ker} T^*)^\perp$ </wikitex> |
TODO: пропуск
Теорема о счетности спектра компактного оператора
Теорема: |
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0. |
Доказательство: |
Так как спектр линейного ограниченного оператора входит в круг радиуса , получаем . Рассмотрим , проверим, что на отрезке — конечное число точек спектра. Предположим обратное, тогда выделим подпоследовательность различных собственных значений (каждое из них больше ). Пусть им соответствуют собственные элементы .Покажем, что при любом , собственные элементы — линейно независимы, и что линейные оболочки и строго вложены друг в друга. Доказательство по индукции: для — тривиально. Пусть — ЛНЗ, покажем, что — тоже ЛНЗ. Покажем от противного: пусть . Подействуем на обе части оператором : . Разделив обе части на (он ненулевой), получим другое разложение по векторам : . Но так как разложение по линейно независимой системе должно быть единственно, то получаем, что , здесь либо нулевое, либо . Так как собственный вектор ненулевой, найдется такое , что , и тогда , то есть получили два одинаковых собственных значения, противоречие, а значит, — ЛНЗ и включение — строгое.Применим к цепи подпространств лемму Рисса о почти перпендикуляре: . Проделав такое для каждого , получим последовательность , заметим, что она ограничена 1. Определим . В силу компактности из можно выбрать сходящуюся последовательность точек. Проверим, что это сделать нельзя, противоречие будет связано с допущением о том, что на бесконечное количество точек.Составим разность Осталось проверить, что . Проверим, что то, что находится в скобке, принадлежит . Если это так, то . Получаем: , где первый множитель не меньше , а второй — (по построению ) , в итоге и, значит, из не выделить сходящейся подпоследовательности. . . , . Подействуем A: . Разность . и, следовательно, принадлежит . |