Альтернатива Фредгольма — Шаудера — различия между версиями
(→Теорема о счетности спектра компактного оператора: вроде привел в нормальный вид) |
Sementry (обсуждение | вклад) м |
||
Строка 71: | Строка 71: | ||
Осталось проверить, что <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n \in L_{n+p-1}</tex>. <tex>L_{n+p-1} = \mathcal{L} \{x_1,\ldots,x_{n+p-1}\}</tex>. <tex>y_{n+p} \in L_{n+p}</tex>, <tex>y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k x_k + \alpha_{n+p} x_{n+p}</tex>. Подействуем A: <tex>A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k A x_k + \alpha_{n+p} A x_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k \lambda_k x_k + \alpha_{n+p} \lambda_{n+p} x_{n+p} </tex>. Разность <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \beta_k x_k \in L_{n+p-1}</tex>. <tex>y_n = \sum\limits_{k=1}^n \gamma_k x_k, A y_n = \sum\limits_{k=1}^n \gamma_k \lambda_k x_k \in L_{n+p-1}</tex> и, следовательно, <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n</tex> принадлежит <tex>L_{n+p-1}</tex>. | Осталось проверить, что <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n \in L_{n+p-1}</tex>. <tex>L_{n+p-1} = \mathcal{L} \{x_1,\ldots,x_{n+p-1}\}</tex>. <tex>y_{n+p} \in L_{n+p}</tex>, <tex>y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k x_k + \alpha_{n+p} x_{n+p}</tex>. Подействуем A: <tex>A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k A x_k + \alpha_{n+p} A x_{n+p} = \sum\limits_{k=1}^{n+p-1} \alpha_k \lambda_k x_k + \alpha_{n+p} \lambda_{n+p} x_{n+p} </tex>. Разность <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} = \sum\limits_{k=1}^{n+p-1} \beta_k x_k \in L_{n+p-1}</tex>. <tex>y_n = \sum\limits_{k=1}^n \gamma_k x_k, A y_n = \sum\limits_{k=1}^n \gamma_k \lambda_k x_k \in L_{n+p-1}</tex> и, следовательно, <tex>\lambda_{n+p} y_{n+p} - A y_{n+p} + A y_n</tex> принадлежит <tex>L_{n+p-1}</tex>. | ||
}} | }} | ||
+ | |||
+ | [[Категория: Функциональный анализ 3 курс]] |
Версия 16:11, 9 июня 2013
, непрерывен на
A — компактный оператор (
)Интегральные уравнения Фредгольма:
в .
X — B-пространство,
, A — компактный.Ставим задачу: y дано, когда
разрешимо относительно x?— операторные уравнения второго рода (явно выделен I). Уравнения первого рода ( ) решаются гораздо сложней. Объясняется это достаточно просто: , следовательно, по теореме Банаха, непрерывно обратим, следовательно, при достаточно больших , разрешимо при любой левой части, причём решения x будут непрерывно зависеть от y. Интересна ситуация при . В случае компактного A ответ даёт теория Шаудера.
Далее будем считать
. , таким образом, ядро T — неподвижные точки A. — единичный шар, — подпространство X. . Но так как A — компактный, — компакт в Y, но в бесконечномерном пространстве шар не может быть компактом, получаем противоречие. Значит, если A — компактный, то .Теорема: |
Пусть , A компактен |
Доказательство: |
Ранее (пятый семестр же?) мы доказали, что если уравнение допускает априорную оценку ( ), то R(T) замкнуто. Нужно доказать, что у T есть априорная оценка.. Значит, все решения уравнения записываются в форме , где — одно из решений, z принадлежит . Но Рассмотрим функцию от n переменных здесь) Эта функция непрерывна (доказательство непрерывности аналогично таковому в теореме Рисса , среди всех решений уравнения существует решение с минимальной нормой. Его назовём , и далее докажем, что эти решения допускают априорную оценку через y. |
TODO: пропуск
Теорема (альтернатива Фредгольма-Шаудера): |
Пусть — компактный оператор и . Тогда возможно только две ситуации:
|
Доказательство: |
<wikitex>
TODO: каким?), $R(T) = (\operatorname{Ker} T^*)^\perp$. Рассмотрим $y = Tx$, очевидно, оно разрешимо, когда $y \in R(T)$, то есть $y \in (\operatorname{Ker} T^*)^\perp$ </wikitex> |
TODO: пропуск
Теорема о счетности спектра компактного оператора
Теорема: |
Спектр компактного оператора не более чем счётен и его предельной точкой может быть только 0. |
Доказательство: |
Так как спектр линейного ограниченного оператора входит в круг радиуса , получаем . Рассмотрим , проверим, что на отрезке — конечное число точек спектра. Предположим обратное, тогда выделим подпоследовательность различных собственных значений (каждое из них больше ). Пусть им соответствуют собственные элементы .Покажем, что при любом , собственные элементы — линейно независимы, и что линейные оболочки и строго вложены друг в друга. Доказательство по индукции: для — тривиально. Пусть — ЛНЗ, покажем, что — тоже ЛНЗ. Покажем от противного: пусть . Подействуем на обе части оператором : . Разделив обе части на (он ненулевой), получим другое разложение по векторам : . Но так как разложение по линейно независимой системе должно быть единственно, то получаем, что , здесь либо нулевое, либо . Так как собственный вектор ненулевой, найдется такое , что , и тогда , то есть получили два одинаковых собственных значения, противоречие, а значит, — ЛНЗ и включение — строгое.Применим к цепи подпространств лемму Рисса о почти перпендикуляре: . Проделав такое для каждого , получим последовательность , заметим, что она ограничена 1. Определим . В силу компактности из можно выбрать сходящуюся последовательность точек. Проверим, что это сделать нельзя, противоречие будет связано с допущением о том, что на бесконечное количество точек.Составим разность Осталось проверить, что . Проверим, что то, что находится в скобке, принадлежит . Если это так, то . Получаем: , где первый множитель не меньше , а второй — (по построению ) , в итоге и, значит, из не выделить сходящейся подпоследовательности. . . , . Подействуем A: . Разность . и, следовательно, принадлежит . |