Метод двоичного подъёма — различия между версиями
AKhimulya (обсуждение | вклад) (→Источники информации) |
AKhimulya (обсуждение | вклад) |
||
Строка 8: | Строка 8: | ||
<tex>dp[v][i]= \begin{cases} | <tex>dp[v][i]= \begin{cases} | ||
p[v] & i = 0,\\ | p[v] & i = 0,\\ | ||
− | dp[dp[v][i - 1]][i - 1] & i \textgreater 0. | + | dp[dp[v][i - 1]][i - 1] & i \: \textgreater \: 0. |
\end{cases}</tex> | \end{cases}</tex> | ||
Строка 17: | Строка 17: | ||
===Ответы на запросы=== | ===Ответы на запросы=== | ||
Ответы на запросы будут происходить за время <tex> O(\log{n})</tex>. | Ответы на запросы будут происходить за время <tex> O(\log{n})</tex>. | ||
− | Для ответа на запрос заметим сначала, что если <tex> c = LCA(v, u) </tex>, для некоторых <tex> v </tex> и <tex> u </tex>, то <tex> d[c] \ | + | Для ответа на запрос заметим сначала, что если <tex> c = LCA(v, u) </tex>, для некоторых <tex> v </tex> и <tex> u </tex>, то <tex> d[c] \leqslant \min(d[v], d[u])</tex>. Поэтому если <tex> d[v] < d[u] </tex>, то пройдем от вершины <tex> u </tex> на <tex> (d[u] - d[v]) </tex> шагов вверх, это и будет новое значение <tex> u </tex> и это можно сделать за <tex> O(\log{n}) </tex>. Можно записать число <tex> (d[u] - d[v]) </tex> в двоичной системе, это представление этого число в виде суммы степеней двоек, <tex> 2 ^ {i_1} + 2 ^ {i_2} + \ldots + 2 ^ {i_l} </tex> и для всех <tex> i_j</tex> пройти вверх последовательно из вершины <tex> u </tex> в <tex> dp[u][i_j] </tex>. |
Дальше считаем, что <tex> d[v] = d[u] </tex>. | Дальше считаем, что <tex> d[v] = d[u] </tex>. |
Версия 07:57, 1 июня 2015
Метод двоичного подъема — один из самых простых методов для решения задачи LCA в online. Он не использует метод решение задачи RMQ и основан на методе динамического программирования.
Содержание
Описание алгоритма
Как и большинство on-line алгоритмов для решения задачи LCA, этот метод делает сначала препроцессинг, чтобы потом отвечать на запросы.
Препроцессинг
Препроцессинг заключается в том, чтобы посчитать функцию:
— номер вершины, в которую мы придем если пройдем из вершины вверх по подвешенному дереву шагов, причем если мы пришли в корень, то мы там и останемся. Для этого сначала обойдем дерево в глубину и для каждой вершины запишем номер ее родителя и глубину вершины в подвешенном дереве . Если — корень, то . Тогда для функции есть рекуррентная формула:
Для того чтобы отвечать на запросы нам нужны будут только те значения
, где , ведь при больших значение будет номером корня.Всего состояний динамики
, где — это количество вершин в дереве. Каждое состояние считается за . Поэтому суммарная сложность времени и памяти препроцессинга — .Ответы на запросы
Ответы на запросы будут происходить за время
. Для ответа на запрос заметим сначала, что если , для некоторых и , то . Поэтому если , то пройдем от вершины на шагов вверх, это и будет новое значение и это можно сделать за . Можно записать число в двоичной системе, это представление этого число в виде суммы степеней двоек, и для всех пройти вверх последовательно из вершины в .Дальше считаем, что
.Если
, то ответ на запрос .А если
, то найдем такие вершины и , такие что , — предок , — предок и . Тогда ответом на запрос будет .Научимся находить эти вершины
и . Для этого сначала инициализируем и . Дальше на каждом шаге находим такое максимальное , что . И проходим из вершин и на шагов вверх. Если такого найти нельзя, то значения и , это те самые вершины, которые нам требуется найти, ведь .Оценим время работы. Заметим, что найденные
строго убывают. Во-первых, потому что мы находим на каждом шаге максимальное значение , а во-вторых, два раза подряд мы одно и то же получить не можем, так как тогда получилось бы, что можно пройти шагов, а значит вместо первого , мы бы нашли . А значит всего значений , их можно перебирать в порядке убывания. Сложность ответа на запрос .Псевдокод
function preprocess():
int[] p = dfs(0)
for i = 1 to n
dp[i][0] = p[i]
for j = 1 to log(n)
for i = 1 to n
dp[i][j] = dp[dp[i][j - 1]][j - 1]
int lca(int v, int u):
if d[v] > d[u]
swap(v, u)
for i = log(n) downto 0
if d[u] - d[v]
u = dp[u][i]
if v == u
return v
for i = log(n) downto 0
if dp[v][i] != dp[u][i]
v = dp[v][i]
u = dp[u][i]
return p[v]