Идеальное хеширование — различия между версиями
Строка 62: | Строка 62: | ||
Тогда <tex>P \left \{\displaystyle \sum_{j=0}^{m-1} m_j \geqslant 4n \right \} \leqslant E\left[\displaystyle\sum_{j=0}^{m-1} mj\right]</tex> <tex dpi="150"> {1 \over 4n} < </tex> <tex dpi="150">{2n \over 4n} = {1 \over 2}</tex>, ч.т.д. | Тогда <tex>P \left \{\displaystyle \sum_{j=0}^{m-1} m_j \geqslant 4n \right \} \leqslant E\left[\displaystyle\sum_{j=0}^{m-1} mj\right]</tex> <tex dpi="150"> {1 \over 4n} < </tex> <tex dpi="150">{2n \over 4n} = {1 \over 2}</tex>, ч.т.д. | ||
}} | }} | ||
− | + | ==Применение идеального хеширования== | |
+ | Идеальное хеширование применяется в тех случаях, когда мы хотим присвоить уникальный идентификатор ключу, без сохранения какой-либо информации о ключе. Одним из наиболее очевидных примеров использования идеального хеширования является ситуация, когда мы располагаем небольшой быстрой памятью, где размещаем значения хешей, связанных с данными хранящимися в большой, но медленной памяти. Причем размер хеш-таблицы можно выбрать таким, что необходимые нам данные, хранящиеся в медленной памяти, будут получены за один запрос. Подобный подход используется, например, в аппаратных маршрутизаторах. Также идеальное хеширование используется для ускорения работы алгоритмов на графах, в тех случаях, когда представление графа не умещается в основной памяти. | ||
==См. также== | ==См. также== | ||
* [[Хеширование]] | * [[Хеширование]] | ||
Строка 72: | Строка 73: | ||
* Д.Э. Кнут. «Искусство программирования: Сортировка и поиск" Том 3, Глава 6.4, стр. 563 | * Д.Э. Кнут. «Искусство программирования: Сортировка и поиск" Том 3, Глава 6.4, стр. 563 | ||
* [http://en.wikipedia.org/wiki/Perfect_hash_function Wikipedia — Perfect hash function] | * [http://en.wikipedia.org/wiki/Perfect_hash_function Wikipedia — Perfect hash function] | ||
+ | *[http://ru.wikipedia.org/wiki/%D0%A5%D0%B5%D1%88%D0%B8%D1%80%D0%BE%D0%B2%D0%B0%D0%BD%D0%B8%D0%B5#.D0.98.D0.B4.D0.B5.D0.B0.D0.BB.D1.8C.D0.BD.D0.BE.D0.B5_.D1.85.D0.B5.D1.88.D0.B8.D1.80.D0.BE.D0.B2.D0.B0.D0.BD.D0.B8.D0.B5 Википедия — Идеальное хеширование] | ||
* [http://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0215.pdf Universal and Perfect Hashing] | * [http://www.cs.cmu.edu/afs/cs/academic/class/15451-s07/www/lecture_notes/lect0215.pdf Universal and Perfect Hashing] | ||
* [http://nord.org.ua/static/course/algo_2009/lecture8.pdf Универсальное хэширование. Идеальное хэширование] | * [http://nord.org.ua/static/course/algo_2009/lecture8.pdf Универсальное хэширование. Идеальное хэширование] |
Версия 21:54, 5 июня 2015
Определение: |
Идеальная хеш-функция (англ. perfect hash function) — хеш-функция, которая без коллизий отображает различные элементы из множества объектов на множество ключей за времени в худшем случае. |
Содержание
Основная идея
Идеальное хеширование используется в задачах со статическим множеством ключей (т.е. после того, как все ключи сохранены в таблице, их множество никогда не изменяется) для обеспечения хорошей асимптотики даже в худшем случае. При этом мы можем дополнительно хотеть, чтобы размер таблицы зависел от количества ключей линейно.
Будем использовать двухуровневую схему хеширования с универсальным хешированием на каждом уровне.
Первый уровень
Используется тот же принцип, что и в случае хеширования с цепочками: семейства универсальных хеш-функций , где — простое число, превышающее .
ключей хешируются в ячеек с использованием хеш-функции , случайно выбранной изВторой уровень
На данном уровне вместо создания списка ключей будем использовать вторичную хеш-таблицу
, хранящую все ключи, хешированные функцией в ячейку , со своей функцией , выбранной из множества . Путем точного выбора хеш-функции мы можем гарантировать отсутствие коллизий на этом уровне. Для этого требуется, чтобы размер хеш-таблицы был равен квадрату числа ключей, хешированных функцией в ячейку .Несмотря на квадратичную зависимость, ниже будет показано, что при корректном выборе хеш-функции первого уровня количество требуемой для хеш-таблицы памяти будет
.Теоретическое обоснование
Теорема: |
Если универсального множества хеш-функций, то вероятность возникновения коллизий не превышает . ключей сохраняются в хеш-таблице размером c использованием хеш-функции , случайно выбранной из |
Доказательство: |
Всего имеется универсального семейства хеш-функций , то для каждой пары вероятность возникновения коллизии равна . Пусть — случайная величина, которая подсчитывает количество коллизий. Если , то математическое ожидание числа коллизий равно пар ключей, которые могут вызвать коллизию. Если хеш-функция выбрана случайным образом из |
Это является очень хорошим результатом, если хотя бы вспомнить на примере парадокса дней рождения о том, что вероятность коллизий растет крайне быстро по сравнению с размером хеш-таблицы.
Теорема: |
Если мы сохраняем ключей в хеш-таблице размеров c использованием хеш-функции , выбираемой случайным образом из универсального множества хеш-функций, то , где — количество ключей, хешированных в ячейку . |
Доказательство: |
Первый переход в равенстве мы совершили благодаря формуле математического ожидания, в частности - линейности. . Далее мы воспользовались свойствамиОчевидно, что - просто общее количество коллизий, поэтому по свойству универсального хеширования математическое ожидание значения этой суммы не превышает А так как , то , ч.т.д. |
Теперь выведем 2 следствия из этой теоремы.
Теорема: |
Если мы сохраняем универсального множества хеш-функций, и устанавливаем размер каждой вторичной хеш-таблицы равным , то математическое ожидание количества необходимой для вторичных хеш-таблиц в схеме идеального хеширования памяти не превышает . ключей в хеш-таблице размером с использованием хеш-функции , выбираемой случайным образом из |
Доказательство: |
Поскольку для , согласно предыдущей теореме: , ч.т.д. |
Теорема: |
Если мы сохраняем универсального множества хеш-функций, и устанавливаем размер каждой вторичной хеш-таблицы равным , то вероятность того, что общее количество необходимой для вторичных хеш-таблиц памяти не менее , меньше чем . ключей в хеш-таблице размером с использованием хеш-функции , выбираемой случайным образом из |
Доказательство: |
Применим неравенство Маркова Пусть Тогда и . , ч.т.д. |
Применение идеального хеширования
Идеальное хеширование применяется в тех случаях, когда мы хотим присвоить уникальный идентификатор ключу, без сохранения какой-либо информации о ключе. Одним из наиболее очевидных примеров использования идеального хеширования является ситуация, когда мы располагаем небольшой быстрой памятью, где размещаем значения хешей, связанных с данными хранящимися в большой, но медленной памяти. Причем размер хеш-таблицы можно выбрать таким, что необходимые нам данные, хранящиеся в медленной памяти, будут получены за один запрос. Подобный подход используется, например, в аппаратных маршрутизаторах. Также идеальное хеширование используется для ускорения работы алгоритмов на графах, в тех случаях, когда представление графа не умещается в основной памяти.
См. также
Источники информации
- Т. Кормен. «Алгоритмы. Построение и анализ» второе издание, Глава 11.5, стр. 308
- Д.Э. Кнут. «Искусство программирования: Сортировка и поиск" Том 3, Глава 6.4, стр. 563
- Wikipedia — Perfect hash function
- Википедия — Идеальное хеширование
- Universal and Perfect Hashing
- Универсальное хэширование. Идеальное хэширование