Дерево Фенвика — различия между версиями
Shersh (обсуждение | вклад) м (→Построение дерева) |
|||
Строка 115: | Строка 115: | ||
modify(i, d) | modify(i, d) | ||
+ | ==Построение дерева== | ||
+ | Будем строить дерево Фенвика исходя из его описания. Можно заметить, что <tex>T_{i}</tex> можно считать быстрее, чем по формуле <tex> T_i = \sum\limits_{k = F(i)}^{i} a_k</tex>. Мы можем представить <tex>T_{i}</tex> как сумму нескольких элементов дерева с меньшими индексами и <tex>a_i</tex> (например, <tex>T_{7} = a_{7} + T_{6} + T_{5} + T_{3}</tex>). Рассмотрим, как получается эта сумма. Элемент <tex>a_i</tex> не учитывался в предыдущих суммах, поэтому мы его прибавляем к <tex>T_i</tex>. <tex>a_{i-1}</tex> содержится только в <tex>T_{i-1}</tex>, поэтому прибавим <tex>T_{i-1}</tex>. Так как <tex>T_{i-1}</tex> может состоять из нескольких элементов из <tex>A</tex>, то мы пропустим все такие <tex>T_j</tex>, которые содержат элементы из <tex>T_{i-1}</tex>. Мы знаем, что <tex>T_j</tex> содержит <tex>a_j</tex>, поэтому можно пропустить все такие <tex>T_j</tex>, где <tex>j</tex> входит в диапазон от <tex>F(i - 1)</tex> до <tex>i - 2</tex> (индексы элементов <tex>T_{i-1}</tex>). | ||
+ | |||
+ | Другими словами, представим каждый элемент массива <tex>T</tex> как столбик (см. картинку). К <tex>a_i</tex> элементу прибавляем <tex>T_{i-1}</tex>. Далее прибавляем такой столбик, верхняя граница которого находится на том же уровне, что нижняя граница предыдущего прибавляемого столбика. Прекращаем складывать, когда нижняя граница нового столбика будет равна <tex>F(i)</tex>. | ||
+ | |||
+ | Покажем, что если мы прибавили столбик, то <tex>F(i) \leqslant F(j)</tex>, то его нижняя граница не ниже, чем нижняя граница столбика <tex>T_i</tex>. Прибавление столбика возможно при условии <tex>F(i) \leqslant j \leqslant i</tex>. Это значит, что отбросив количество цифр, равное количеству последних единиц у числа <tex> i </tex>, из конца двоичной записи <tex>F(i)</tex>, <tex>j</tex> и <tex> i</tex>, то мы получим равные числа. Тогда <tex>F(j)</tex> не может быть меньше <tex>F(i)</tex>. | ||
+ | |||
+ | '''function''' init(i) | ||
+ | t[i] = a[i] | ||
+ | j = i - 1 | ||
+ | '''while''' j >= F(i) | ||
+ | t[i] += t[j] | ||
+ | j = F(j) - 1 | ||
+ | |||
+ | Такое построение будет работать за <tex>O(n \log{n})</tex>. | ||
== Запрос получения значения функции на префиксе == | == Запрос получения значения функции на префиксе == | ||
Пусть существует некоторая бинарная операция <tex>\circ</tex>. Чтобы получить значение на отрезке <tex>[i, j]</tex>, нужно провести операцию, обратную к <tex>\circ</tex>, над значениями на отрезках <tex>[0, j]</tex> и <tex>[0, i - 1]</tex>. | Пусть существует некоторая бинарная операция <tex>\circ</tex>. Чтобы получить значение на отрезке <tex>[i, j]</tex>, нужно провести операцию, обратную к <tex>\circ</tex>, над значениями на отрезках <tex>[0, j]</tex> и <tex>[0, i - 1]</tex>. | ||
Строка 122: | Строка 137: | ||
Обозначим <tex> G_i = \mathrm sum(i) = \sum\limits_{k = 0}^{i} a_k </tex>. Тогда <tex> \mathrm sum(i, j) = \sum\limits_{k = i}^{j} a_k = G_j - G_{i - 1} </tex>. | Обозначим <tex> G_i = \mathrm sum(i) = \sum\limits_{k = 0}^{i} a_k </tex>. Тогда <tex> \mathrm sum(i, j) = \sum\limits_{k = i}^{j} a_k = G_j - G_{i - 1} </tex>. | ||
− | + | Мы можем найти сумму аналогично построению дерева. Будем складывать частичные суммы, пока не дойдем до элемента <tex>a_0</tex>. | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
=== Реализация === | === Реализация === | ||
− | |||
Приведем код функции <tex> \mathrm sum(i) </tex>: | Приведем код функции <tex> \mathrm sum(i) </tex>: | ||
'''int''' sum(i): | '''int''' sum(i): | ||
Строка 146: | Строка 147: | ||
i = f(i) - 1 | i = f(i) - 1 | ||
'''return''' result | '''return''' result | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Сравнение дерева Фенвика и дерева отрезков== | ==Сравнение дерева Фенвика и дерева отрезков== |
Версия 14:52, 5 июня 2015
Содержание
Описание структуры
Дерево Фе́нвика (англ. Binary indexed tree) — структура данных, требующая
памяти и позволяющая эффективно (за ) выполнять следующие операции:- изменять значение любого элемента в массиве,
- выполнять некоторую ассоциативную, коммутативную, обратимую операцию на отрезке .
Впервые описано Питером Фенвиком в 1994 году.
Пусть дан массив
. Деревом Фенвика будем называть массив из элементов: , где и — некоторая функция, от выбора которой зависит время работы операций над деревом. Рассмотрим функцию, позволяющую делать операции вставки и изменения элемента за время . Она задается простой формулой: , где — это операция побитового логического . При числа и его значения, увеличенного на единицу, мы получаем это число без последних подряд идущих единиц.Эту функцию можно вычислять по другой формуле:
где — количество подряд идущих единиц в конце бинарной записи числа . Оба варианта равносильны, так как функция, заданная какой-либо из этих формул, заменяет все подряд идущие единицы в конце числа на нули.Запрос изменения элемента
Нам надо научиться быстро изменять частичные суммы в зависимости от того, как изменяются элементы. Рассмотрим как изменяется массив
при изменении элемента .Лемма: |
Для пересчёта дерева Фенвика при изменении величины необходимо изменить элементы дерева , для индексов которых верно неравенство . |
Доказательство: |
необходимо менять те , для которых попадает в необходимые удовлетворяют условию . |
Лемма: |
Все такие , для которых меняется при изменении , можно найти по формуле , где — это операция побитового логического . |
Доказательство: |
Из доказанной выше леммы следует, что первый элемент последовательности само | . Для него выполняется равенство, так как . По формуле мы заменим первый ноль на единицу. Неравенство при этом сохранится, так как осталось прежним или уменьшилось, а увеличилось. не может увеличится, так как функция заменяет последние подряд идущие единицы числа на нули, а по формуле у нового значения увеличивается количество единиц в конце, что не может привести к увеличению . Докажем от противного, что нельзя рассматривать значения , отличные от тех, которые мы получили по формуле. Рассмотрим две различные последовательности индексов. Первая последовательность получена по формуле, вторая — некоторая последовательность чисел, не превосходящие . Возьмём число из второй последовательности, которого нет в первой последовательности. Пусть . Уберём у все подряд идущие единицы в конце двоичной записи, столько же цифр уберём в конце числа . Обозначим их как и . Чтобы выполнялось условие , должно выполняться неравенство . Но если , то и , что противоречит условию . Значит, . Но тогда возможно получить по формуле , следовательно, . Получили противоречие: можно вычислить по формуле, а это значит, что оно содержится в первой последовательности. Таким образом, нужные элементы можно искать по формуле .
Заметим, что
возрастает немонотонно. Поэтому нельзя просто перебирать значения от , пока не нарушается условие. Например, пусть . При данной стратегии на следующем шаге ( ) нарушится условие и мы прекратим пересчитывать . Но тогда мы упускаем остальные значения , например ., десятичная запись | |||||||||||
, двоичная запись | |||||||||||
, двоичная запись | |||||||||||
, десятичная запись |
Все мы можем получить следующим образом: . Следующим элементом в последовательности будет элемент, у которого первый с конца ноль превратится в единицу. Можно заметить, что если к исходному элементу прибавить единицу, то необходимый ноль обратится в единицу, но при этом все следующие единицы обнулятся. Чтобы обратно их превратить в единицы, применим операцию . Таким образом все нули в конце превратятся в единицы и мы получим нужный элемент. Для того, чтобы понять, что эта последовательность верна, достаточно посмотреть на таблицу.
Несложно заметить, что данная последовательность строго возрастает и в худшем случае будет применена логарифм раз, так как добавляет каждый раз по одной единице в двоичном разложении числа
.Можно написать функцию получения
.int next(i): return i = i | (i + 1)
Напишем функцию, которая будет прибавлять к элементу
число , и при этом меняет соответствующие частичные суммы. Так как наш массив содержит элементов, то мы будем искать до тех пор, пока оно не превышает значение .function modify(i, d): while i < N t[i] += d i = next(i);
Часто можно встретить задачу, где требуется заменить значение элемента
на . Заметим, что если вычислить разность и , то можно свести эту задачу к операции прибавления к .function set(i, t): d = t - a[i] modify(i, d)
Построение дерева
Будем строить дерево Фенвика исходя из его описания. Можно заметить, что
можно считать быстрее, чем по формуле . Мы можем представить как сумму нескольких элементов дерева с меньшими индексами и (например, ). Рассмотрим, как получается эта сумма. Элемент не учитывался в предыдущих суммах, поэтому мы его прибавляем к . содержится только в , поэтому прибавим . Так как может состоять из нескольких элементов из , то мы пропустим все такие , которые содержат элементы из . Мы знаем, что содержит , поэтому можно пропустить все такие , где входит в диапазон от до (индексы элементов ).Другими словами, представим каждый элемент массива
как столбик (см. картинку). К элементу прибавляем . Далее прибавляем такой столбик, верхняя граница которого находится на том же уровне, что нижняя граница предыдущего прибавляемого столбика. Прекращаем складывать, когда нижняя граница нового столбика будет равна .Покажем, что если мы прибавили столбик, то
, то его нижняя граница не ниже, чем нижняя граница столбика . Прибавление столбика возможно при условии . Это значит, что отбросив количество цифр, равное количеству последних единиц у числа , из конца двоичной записи , и , то мы получим равные числа. Тогда не может быть меньше .function init(i) t[i] = a[i] j = i - 1 while j >= F(i) t[i] += t[j] j = F(j) - 1
Такое построение будет работать за
.Запрос получения значения функции на префиксе
Пусть существует некоторая бинарная операция
. Чтобы получить значение на отрезке , нужно провести операцию, обратную к , над значениями на отрезках и .В качестве бинарной операции
рассмотрим операцию сложения.Обозначим
. Тогда .Мы можем найти сумму аналогично построению дерева. Будем складывать частичные суммы, пока не дойдем до элемента
.Реализация
Приведем код функции
:int sum(i): result = 0; while i >= 0 result += t[i] i = f(i) - 1 return result
Сравнение дерева Фенвика и дерева отрезков
- Дерево Фенвика занимает в константное значение раз меньше памяти, чем дерево отрезков. Это следует из того, что дерево Фенвика хранит только значение операции для каких-то элементов, а дерево отрезков хранит сами элементы и частичные результаты операции на подотрезках, поэтому оно занимает как минимум в два раза больше памяти.
- Дерево Фенвика проще в реализации.
- Операция на отрезке, для которой строится дерево Фенвика, должна быть обратимой, а это значит, что минимум (как и максимум) на отрезке это дерево считать не может, в отличие от дерева отрезков. Но если нам требуется найти минимум на префиксе, то дерево Фенвика справится с этой задачей. Такое дерево Фенвика поддерживает операцию уменьшения элементов массива. Пересчёт минимума в дереве происходит быстрее, чем обновление массива минимумов на префиксе.