Абелева группа

Материал из Викиконспекты
Перейти к: навигация, поиск

Абелева группа[править]

Определение:
Группа [math]G[/math] называется абелевой, если ее операция коммутативна: для любых [math]a,b\in G[/math] выполнено [math]a\cdot b = b\cdot a[/math]. Абелевы группы иногда называют аддитивными, обозначая групповую операцию как [math]a+b[/math], обратный элемент как [math]-a[/math], нейтральный как [math]0[/math]. При этом запись [math]a-b[/math] понимают как [math]a+(-b)[/math].


Примеры[править]

  • Группа ненулевых вещественных чисел относительно умножения является абелевой.
  • Любая циклическая группа является абелевой.
  • Группа перестановок множества из [math]n[/math] элементов не является абелевой при [math]n \ge 3[/math].
  • Группа обратимых матриц относительно матричного умножения не является абелевой.