Теоремы Карзанова о числе итераций алгоритма Диница в сети с целочисленными пропускными способностями — различия между версиями
Nikitaevg (обсуждение | вклад) |
Nikitaevg (обсуждение | вклад) (→Обозначения) |
||
Строка 1: | Строка 1: | ||
==Обозначения== | ==Обозначения== | ||
− | * | + | Введём следующие обозначения: |
− | * | + | * <tex>N = (V,E,s,t,c)</tex> {{---}} [[Определение сети, потока|сеть]] с целочисленными пропускными способностями, |
− | *<tex>c^{+}(v) = \sum\limits_{uv \in E} c_{uv}</tex> | + | * обозначим <tex>C = \max\limits_{uv \in E} c_{uv}</tex> и <tex>F</tex> как максимальный поток, |
− | *<tex>c^{-}(v) = \sum\limits_{vu \in E} c_{vu}</tex> | + | *<tex>c^{+}(v) = \sum\limits_{uv \in E} c_{uv}</tex>, |
− | *<tex>p(v) = min\big\{c^{+}(v), c^{-}(v)\big\}</tex> {{---}} потенциал вершины <tex>v</tex> | + | *<tex>c^{-}(v) = \sum\limits_{vu \in E} c_{vu}</tex>, |
− | *<tex>P = \sum\limits_{v \in V, v \neq s,t}p(v)</tex> {{---}} общий потенциал | + | *<tex>p(v) = \min\big\{c^{+}(v), c^{-}(v)\big\}</tex> {{---}} потенциал вершины <tex>v</tex>, |
+ | *<tex>P = \sum\limits_{v \in V, v \neq s,t}p(v)</tex> {{---}} общий потенциал, | ||
*<tex>G_f</tex> {{---}} [[Дополняющая сеть, дополняющий путь|остаточная сеть]]. | *<tex>G_f</tex> {{---}} [[Дополняющая сеть, дополняющий путь|остаточная сеть]]. | ||
− | |||
==Теоремы== | ==Теоремы== |
Версия 20:16, 4 января 2017
Содержание
Обозначения
Введём следующие обозначения:
- сеть с целочисленными пропускными способностями, —
- обозначим и как максимальный поток,
- ,
- ,
- — потенциал вершины ,
- — общий потенциал,
- остаточная сеть. —
Теоремы
Лемма (1): |
Пусть — расстояние между и в исходной сети, максимальный поток в этой сети равен .
Тогда |
Доказательство: |
Пусть сохранения потока, если обозначить как любой допустимый поток, то единиц потока должно проходить через . Но суммарное количество потока, которое может проходить через любую вершину не превосходит ее потенциала. Отсюда, если обозначить как общий потенциал вершин из , то мы имеем: — расстояние между и , а — набор вершин, удаленных от на . — разъединяющее множество узлов: при его удалении исчезают все пути из в . Следуя закону
для любого допустимого потока . В частности, , таким образом получаем: |
Лемма (2): |
Пусть — сеть, а — допустимый поток в этой сети. Тогда общий потенциал в остаточной сети равен общему потенциалу . |
Доказательство: |
По теореме о декомпозиции поток можно разбить на множество простых путей из в и циклов. Рассмотрим каждый путь (цикл) и убедимся, что, пуская по нему поток , потенциал вершины не изменится. Действительно, рассмотрим вершину , поток в нее течет по ребру , а из нее по ребру . Пусть — функция пропускных способностей в остаточной сети после пропускания потока по -ому пути (циклу). Рассмотрим . , а , сложив эти два значения, получим, что остается неизменной. Применив такое же рассуждение для , получим, что потенциал каждой вершины остается неизменным. |
Теорема (Первая теорема Карзанова): |
Число итераций алгоритма Диница в сети ( — исток, — сток) с целочисленными пропускными способностями — . |
Доказательство: |
Пусть — максимальный поток в сети . Теорема верна для , так как после каждой фазы поток увеличивается хотя бы на . Если , рассмотрим последнюю фазу, на момент начала выполнения которой поток в сети был меньше, чем . После этого потребуется не больше фаз, чтобы найти максимальный поток. На предыдущей фазе поток ( ) в был не больше , таким образом .— сеть с максимальным потоком и потенциалом (по Лемме(2)). Поэтому можно воспользоваться Леммой(1), чтобы оценить расстояние между и в , и получить оценку длины слоистой сети: Так как каждая фаза увеличивает длину слоистой сети минимум на один, то осуществляется не больше фаз. Таким образом происходит не более фаз. |
Лемма (3): |
Пусть в сети параллельных ребер. Пусть — максимальный поток в . Тогда расстояние между и в таково: . нет |
Доказательство: |
Обозначим Таким образом как набор вершин на расстоянии от . Множества и определяют разрез . Пропускная способность этого разреза не больше , так как все ребра между и также являются ребрами между и и не более чем двумя параллельными ребрами, исходящими из какой-то вершины в остаточной сети. По теореме о максимальном потоке/минимальном разрезе, . ограничен наименьшим из . Но эта величина максимальна, когда для , таким образом . Выражая , получаем нужное. |
Теорема (Вторая теорема Карзанова): |
Число итераций алгоритма Диница с целочисленными пропускными способностями — . |
Доказательство: |
Если , то теорема очевидна. Положим, что , и рассмотрим последнюю фазу, в которой поток не превышает . В этот момент осталось не более фаз, и — сеть с максимальным потоком . Мы можем применить Лемму(3), чтобы оценить длину слоистой сети, и, соответственно, количество выполненных фаз:Таким образом, прошло . фаз, и фаз осталось. |